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Abstract

This paper compares different approaches for incorporating overnight information into one-day-

ahead equity trading Value-at-Risk (VaR) limits. We develop the continuous-time theory behind

a novel bivariate modeling approach where conditional mean and (co)variance forecasts are con-

structed separately for the daytime and overnight returns. An alternative, widely-used approach

consists of bundling together the overnight squared return and the open-to-close realized volatility.

In a third approach, the VaR limits are generated at the market open, when the overnight return is

known and can be included in the conditioning information set. Our empirical application endorses

the last approach for the S&P 500 index, and bivariate modeling for the Russell 2000 index. The

contrasting findings for the two indices shed light on the extent to which the open price efficiently

reflects news accumulated during non-trading hours. Price discovery at the open is less efficient for

small capitalization, thinly traded stocks. [145 words]
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1 Introduction

The world’s major stock exchanges are open for a limited number of hours each day, five days a week.

Hence, although investors receive information on a continuous basis, they are able to act immediately

on that information for only a part of the day in each of those exchanges. The overnight ‘surprise’ or

close-to-open return reflects information accumulated during non-trading hours, such as trades and

prices from stock markets in other time zones, and news releases such as earnings announcements.

Existing market microstructure research documents that information flow during trading (daytime)

hours is greater than information flow during non-trading (overnight) hours.1 However, the increasing

globalization of securities markets and electronic trading systems (such as ECNs) are likely to add to

the importance of overnight information flow, as events from around the globe can trigger investor

reactions in all markets.2 The events that occur during overnight non-trading hours will typically be

impounded into prices very rapidly in the morning as an exchange opens for a new trading day.

The primary objective of this study is to improve the forecasting of daily return tail behavior defined

in terms of Value-at-Risk (VaR). VaR has become a standard risk management tool for setting day-

by-day loss limits of equity trading desks, and is widely employed by banks and hedge funds. Through

one-day-ahead VaR forecasts, the risk management team of the bank monitors in real time that the

equity (and possibly FOREX, fixed income, and derivatives) trading desk stays within predefined risk

limits. Besides modeling techniques, tail risk forecastability also relies on a useful information set.

There is considerable evidence from existing studies that the dynamics of the return process differ

during non-trading and trading hours (Lockwood and Lin, 1990; Hasbrouck, 1991; Masulis and Ng,

1995; Martens, 2002; Cliff et al., 2008; Andersen et al., 2011). This has been acknowledged in various

theoretical finance models (Oldfeld and Rogalski, 1980; Hong and Wang, 2000).3 Assuming an absence

1See George and Hwang (2001), Ronen (1997), Jones et al. (1994), and French and Roll (1986), inter alios.
2De Goojier et al. (2009) exploit full information in the intra-day stock price patterns in foreign markets during

non-trading hours in a home market to predict the opening of an index in the home market.
3In the paper we use the terms ‘daytime’, ‘open-to-close’ and ‘active’ period interchangeably to refer to the regular

trading period between 9:30am and 4:00pm EST. Likewise, we use the terms ‘overnight’, ‘close-to-open’ and ‘inactive’

interchangeably to refer to the period outside regular trading hours, from 4:00pm to 9:30am EST.
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of trading during the overnight period, however, there is no consensus as yet in the literature on how

to incorporate the overnight ‘surprise’ for daily equity tail risk forecasting.

This paper makes two contributions. First, it develops the continuous-time theory to motivate

a bivariate modeling and forecasting approach for tail behavior of the daily return that explicitly

conceptualizes each 24-hour period as comprising two segments: overnight and daytime. During the

overnight segment, equity markets are closed for trading, although news releases do not cease. A trader

can, at the close of day t − 1, regard the volatility of the 24-hour day ahead (from close to close) as

comprising two random, but forecastable volatilities pertaining to the overnight and daytime segments,

respectively, and a forecastable covariance between overnight and daytime returns. Theoretically, it

is possible to argue that market microstructure effects such as price staleness and news spillover can

induce a non-zero covariance between daytime and overnight returns which may be valuable in setting

the day t equity VaR limits at the close of day t − 1. Exploiting this covariance is precluded if the

risk manager builds his forecast instead at the open of day t, when the return corresponding to the

overnight segment from previous close to open is observed.

Our second main contribution is to compare empirically three VaR forecasting approaches that

differ in how they exploit overnight information. The goal is to produce evidence on their relative accu-

racy in predicting the tail risk behavior of the close-to-close return distribution. The explicit question

to deal with is: which approach produces more appropriate daily VaR limits for equity trading desks

for assets where no overnight trading is available? In the first approach, called bivariate, conditional

mean forecasts are derived from an AR model for the daytime (overnight) return which is allowed to

depend not only on its own past values, but also on the previously observed overnight (daytime) return.

In order to obtain the conditional variance forecasts, we put together three components: the overnight

volatility forecast obtained from a GARCH model fitted to overnight returns, the daytime volatility

forecast from a long-memory model fitted to the realized variance, and the covariance forecast from a

dynamic conditional correlation (DCC) type modeling approach. In a competing approach, referred

to as bundling, we follow the literature in bundling together the overnight and daytime periods into
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single return and realized volatility measures. More specifically, a conventional AR model is fitted to

close-to-close returns, and a long-memory model to overnight-adjusted realized variances. In the third

approach, called ex post, we condition the tail risk forecast on the information available at market

open. Since the overnight return is now observed ex post, it can be included as an explanatory variable

in the models that forecast the conditional mean and daytime realized variance.4

Although the first (bivariate) and third (ex post) approaches described above are novel as such,

close versions can be found in the literature. For instance, regarding the bivariate formulation, An-

dersen et al. (2011) approximate the daytime return variation through a long-memory HAR model,

while the overnight return variation is captured by a GARCH-type model. Key differences between

the latter study and ours are that Andersen et al. (2011) ascribe a role to discrete jumps (which we

assume away, for simplicity), whereas the overnight-intraday covariance is not allowed to play any

role. Moreover, the forecasting objective in Andersen et al. (2011) is the second moment (instead of

tail risk), and they adopt the sum of the squared overnight return and the realized variance as their

proxy for the true volatility. Using this proxy and the Mincer-Zarnowitz R2 criterion in a volatility

forecasting framework, they conclude that there are benefits to separately modeling the daytime and

overnight volatility components. Regarding the ex post approach, existing studies predict the variance

of the daily return process on the basis of long-memory models fitted to the realized variance from

open-to-close (e.g. Wu, 2011; Corsi et al., 2008; Thomakos and Wang, 2003; Andersen et al., 2001),

which ignores overnight effects. In contrast, we do not ignore the overnight return (observed at market

open) but include it in the conditioning information set for the open-to-close return modeling.

The most commonly adopted approach thus far in the high-frequency finance literature is what we

call bundling above, namely, modeling the long memory properties of the overnight-adjusted realized

variance (RV). In essence, the latter is constructed by bundling the squared overnight return and the

sum of open-to-close intraday (e.g. 5-minute) squared returns. Various overnight adjustments have

4It is important to note the very short (1 day ahead) forecast horizon for VaR when it is used as a ‘real time’ risk

management control tool by banks. It is possible that a longer (weekly or monthly) forecast horizon may reduce the

importance of explicitly modeling the overnight return volatility.
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been used which include simply adding the squared close-to-open return as one more summand in the

realized variance (Bollerslev et al, 2009; de Pooter et al, 2008; Becker et al, 2007; Martens, 2002; Blair

et al, 2001), and weighted aggregation of the squared close-to-open return and the realized variance

following Hansen and Lunde’s (2005) procedure. Overnight-adjusted RV measures are often modeled

through long memory specifications (e.g. Giot and Laurent, 2004; Koopman et al., 2005; Angelidis and

Degiannakis, 2008a; Martens et al., 2009; Fuertes and Olmo, 2012). These studies have in common

the implicit assumption that the overnight squared return is part of the same process that generates

the daytime realized volatility which precludes, by construction, separate modeling efforts for the two

segments of the day. The bundling also precludes exploiting any dynamic pattern in the covariance

between intraday and overnight returns.

Our empirical application is based on S&P 500 and Russell 2000 index market data over the period

November 12, 1997 to September 31, 2011. The use of index data is key to the notion that there can

be a forecastable covariance between overnight and daytime returns. The index opening price is

unlikely to reflect all overnight news because of an infrequent trading problem. This problem is more

pronounced for small cap stocks. Index data lags actual developments, especially at the market open,

since it takes some time before each of the constituent stocks begins trading. Thus, the first published

index quote of each day will contain numerous stale prices, i.e. transaction prices from the previous

day.5 The fact that the first index quote is stale means that its value does not fully reflect all overnight

news. Moreover, overnight news may not be rapidly impounded into prices at the market open since

the initial part of the trading day is characterized by very rapid bid-ask oscillations, particularly for

small cap stocks, which are noisy and unlikely to be related to fundamental news (Hasbrouck, 2012).

Overnight news spill over into the trading day, possibly inducing a non-zero correlation between the

intraday and overnight innovations. In other words, some of the overnight news are still reflected

5Stoll and Whaley (1990a) document empirically that in the 1980s, it took around five to six minutes for large stocks

to open for trading on the NYSE. Spurlin et al. (2008) show that for S&P 500 stocks over the period 1996-2001, the

average opening time had fallen to around 3.5 minutes. With the advent of electronic trading, the average time to open

in today’s markets is likely to be much shorter, but large cap stocks will open faster than small cap stocks.
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in the prices observed during the daytime trading period, implying ex ante correlation between the

overnight and daytime returns.6,7

We compare the equity tail risk forecasts generated by the three aforementioned approaches –

bivariate, bundling and ex post – within a dynamic quantile backtesting framework. More specifically,

accuracy of the one-day-ahead VaR forecasts is gauged through Engle and Manganelli’s (2004) dynamic

quantile test and a probit-based version with improved statistical properties. We find that the VaR

backtesting results for the Russell 2000 index endorse the bivariate approach. In contrast, for the

S&P 500 portfolio the best tail risk forecasts are obtained by waiting to observe the overnight return

at the market opening. The bundling approach, which is commonplace in extant literature, appears

effectively inferior to the other two approaches introduced in this study. These results are robust to

the inclusion and exclusion of the recent financial crisis in the out-of-sample period.

The differences across the two indices, the large cap S&P 500 and the small cap Russell 2000, shed

light on price discovery mechanisms. Small-cap stocks are typically more thinly traded and less liquid

than large cap stocks. Barclay and Hendershott (2008) show that the opening price conveys more

fundamental information for high trading volume stocks. Accordingly, for the Russell 2000, there is

less value in observing the opening quote, and more efficient forecasts for day t can be generated at

the close of day t− 1, which allows for modeling the overnight return process and also the covariance

of daytime and overnight returns. For the S&P 500, in contrast, it is worthwhile to wait until the

market opens, so that the overnight return based on previous close and open prices can be exploited

6Various studies deal with the fact that not all equity index constituents traded in NYSE immediately begin trading

at the market open. Ahoniemi and Lanne (2012) and Chan et al. (1991) both wait until 5 minutes of trading has elapsed

before calculating an overnight return. Masulis and Shivakumar (2002) and Noureldin et al. (2011) wait 15 minutes, and

Lin et al. (1994) wait for a full 30 minutes. Stoll and Whaley (1990b) omit the first two 5-minute returns of each trading

day from their analysis of index returns, and Hecq et al. (2012) omit the first 5 minutes in their stock-level analysis.
7Our VaR modeling approach can be generalized to any market where trading ceases for certain periods, which still

applies to the majority of securities markets worldwide, including the U.S. futures market which is closed to trading

over weekends. There is a parallel, smaller empirical literature on daily volatility forecasting that focuses on the futures

(instead of cash) market for which trading data is also available overnight through electronic trading platforms. Taylor

(2007) exploits per-hour returns from 12:00am to 8:30am (E-mini S&P500 futures), 8:30am to 3:15pm (regular S&P 500

futures), and 3:15pm to 12:00am (E-mini S&P 500 futures). Martens (2002) uses intra-day and intra-night S&P 500

futures prices observed at the 5 min and 15 min frequencies, respectively.
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in the conditioning information set to produce the day-ahead equity VaR limits.

This study continues as follows. Section 2 sets out the risk management framework of interest

whereas Section 3 presents three competing downside tail risk forecasting methods that differ in how

the overnight return is treated. Section 4 discusses the framework for VaR forecast evaluation. Section

5 discusses the empirical evidence, and a final section concludes.

2 Risk Management Framework

The one-day 1% Value-at-Risk (VaR) of a given portfolio is the maximum dollar-amount loss that

should be exceeded only 1% of the time. Such a measure has been used by banks since the 1990s

as a one-dimensional snapshot of the downside risk of the close-to-close return (or profit and loss)

distribution. Formally, the daily task of risk managers by which VaR limits are set for separate trading

desks (e.g. equity, FX, fixed income) can be described as predicting a quantile of the conditional close-

to-close return distribution. Commercial banks routinely calculate the 1-day VaR in order to anticipate

the maximum loss over the next day with a 99% probability. Real time risk-monitoring using VaR

has the advantage over other approaches (e.g. setting risk limits in the form of notional limits and/or

stop-loss limits) that VaR limits are comparable across assets and forward-looking in nature. The

widespread use of VaR as an internal measure of risk by banks was formally acknowledged by the

Basel Accord which introduced in 1996 a VaR-based capital requirement framework for positions held

for trading intent (BCBS, 1996). Subsequently, the so-called ‘trading book’ in which risk weights to

capture market risk are based on banks’ own VaR models came to account for a substantial part of

banks’ total risk-weighted assets.

VaR-based risk limits can be obtained using non-parametric (e.g. historical simulation), semi-

parametric (e.g. CAViaR) and parametric (e.g. GARCH) techniques depending on the number of

assumptions made on the daily return distribution.8 The most widely-used approach remains the

parametric VaR that hinges on the assumption that returns belong to a location-scale density implying,

8For recent surveys on VaR modeling, see Kuester et al. (2006) and Angelidis and Degiannakis (2008b).
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in turn, that the VaR is an affine function of the volatility (Giot and Laurent, 2004; Giacomini and

Komunjer, 2005; Clements et al., 2008; Brownlees and Gallo, 2010; Fuertes and Olmo, 2012).

The goal is to forecast out-of-sample the α-quantile of the conditional distribution of the daily

return process, V aRt,α ≡ F−1t (α), with F−1t (·) the inverse of the conditional distribution of rt given

=t−1, i.e. P (rt ≤ V aRt,α|=t−1) = α where =t−1 denotes the conditioning information set.9 Our

model specification of choice for the daily close-to-close return process is location-scale, which can be

written as rt = µt|t−1 +
√
IVt|t−1εt, with εt the corresponding standardized innovation. By assuming

independence between IVt|t−1 and εt, the VaR prediction at nominal coverage level α can be expressed

V aRt|t−1,α = µt|t−1 +
√
IVt|t−1F

−1
ε (α) (1)

where the first term µt|t−1 is a forecast of the conditional mean of the close-to-close return (or profit

and loss) distribution; the second term IVt|t−1 is a forecast of the conditional variance of the same

process; and F−1ε (α) is the α-quantile of the skewed Student-t distributed standardized innovation εt.

3 Overnight Information for VaR-Based Risk Monitoring

The first subsection below presents a novel theoretical framework to account for the role of overnight

information in estimating the notional volatility of the daily close-to-close return process. Section

3.2 outlines various model-free estimators that have been widely in the high-frequency literature for

measuring ex post the daily integrated variance. Section 3.3 presents an approach for forecasting the

daily integrated variance one-day-ahead that directly builds on the framework laid out in Section 3.1.

Section 3.4 describes how the various mean and variance forecasts are transformed into VaR forecasts.

9Our interest is in long trading positions. For short trading positions one would analyze instead the right tail, i.e.

F−1
t (1− α). Commercial banks are required to report VaR at confidence level 99% to regulators but most banks adopt

the 95% level for internal backtesting. We consider both α = {0.01, 0.05}.
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3.1 Overnight and Daytime Integrated Variance Processes

The diffusion of the log-price process, asumming as it is usual in the finance literature that it belongs

to the class of semimartingales, is characterized by the stochastic differential equation

dpt = µtdt+ σtdWt 0 ≤ t ≤ T (2)

with σt the instantaneous or spot volatility process which is stationary and independent of the Brow-

nian motion Wt, and µt the instantaneous deterministic drift term. It is also assumed, as in Hansen

and Lunde (2005) inter alios, that discrete jumps have a negligible effect on the price diffusion.

To establish notation, let Ot and Ct represent, respectively, the market opening and closing times

of day t. The time period from Ct−1 to Ct represents the entire 24 hr day t comprising an overnight

period when the market is closed (from Ct−1 to Ot) and an official trading period from Ot to Ct,

hereafter referred to as daytime; likewise, day t+1 spans the period from Ct to Ct+1 and so forth. The

daily return is denoted rt ≡ pCt − pCt−1 where prices are measured (in logarithms) at market closing

time, i.e. pt ≡ pCt . From equation (2) it follows that the integrated variance is given by

IVt ≡ V (rt) =

∫ t

t−1
σ2sds (3)

which represents the true or notional variability of the daily return process on day t. In order to

capture the potentially different dynamics of the overnight and daytime components of the continuous

time log-price process, the stochastic differential equation (2) can be written as

dpt = {µo,tdt+ σo,tdWo,t} 1(Ct−1 < t ≤ Ot) + {µd,tdt+ σd,tdWd,t} 1(Ot < t ≤ Ct) 0 ≤ t ≤ T (4)

where the deterministic sequences µo,t and µd,t are spot overnight and daytime drifts, respectively,

and σo,t and σd,t are spot volatility processes. The randomness in the overnight and daytime diffusions

of the log-price process is dictated, respectively, by the Brownian motions Wo,t and Wd,t.

At this point it is convenient to introduce the sigma-algebra =t−1 in order to define the probability

space underlying our bivariate modeling framework. =t−1 is the union of the different sigma-algebras
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generated by each set of high-frequency (HF) or intraday prices available up to day t− 1 end; unless

otherwise noted, the latter refers to the market closing time Ct−1. More formally, we have =t−1 ≡

=HF,1∪=HF,2∪ . . .∪=HF,t−1 with =HF,j the sigma-algebra obtained from the historical intraday prices

observed on day j from Cj−1 to Cj . Conditional on the sigma-algebra =t−1, the Brownian motions in

model (4) can be correlated, that is, E[dWo,sdWd,s∗ | =t−1] = ρss∗ with Ct−1 < s < Ot < s∗ < Ct.
10

From equation (4), it follows that the daily return process rt ≡ pCt − pCt−1 can be expressed as

rt = ro,t+rd,t where ro,t ≡ pOt−pCt−1 and rd,t ≡ pCt−pOt are, respectively, the overnight and daytime

returns. These two processes can be formalized, respectively, as

ro,t =

∫ Ot

Ct−1

µo,sds+

∫ Ot

Ct−1

σo,sdWo,s, (5a)

and

rd,t =

∫ Ct

Ot

µd,s∗ds
∗ +

∫ Ct

Ot

σd,s∗dWd,s∗ . (5b)

For notational simplicity we define µo,t ≡
∫ Ot
Ct−1

µo,sds as the integrated deterministic drift driving the

overnight return, and εo,t ≡
∫ Ot
Ct−1

σo,sdWo,s as its random component; likewise, at daytime.

Proposition. The daily integrated variance of the return process rt is the sum of the integrated

variances of the overnight and daytime components, ro,t and rd,t, which can be formalized as

IVt = IVo,t + IVd,t (6)

with IVo,t ≡ V (ro,t) =
∫ Ot
Ct−1

σ2o,sds and IVd,t ≡ V (rd,t) =
∫ Ct
Ot
σ2d,s∗ds

∗.

The proof of this proposition is in Appendix A.

The decomposition formalized in (6) is exploited in the next section for constructing ex post realized

volatility measures (i.e., estimates of IVt) based on high frequency prices. Note that, although strictly

10Conditional on the sigma-algebra =Ot comprising high-frequency information up to the market opening, the Brownian

motions Wo,t and Wd,t are uncorrelated. This result follows from the Law of Iterated Expectations: E[dWo,sdWd,s∗ ] =

E[E[dWo,sdWd,s∗ |=Ot ]] = E[dWo,sE[dWd,s∗ |=Ot ]] = 0, since E[dWd,s∗ |=Ot ] = 0 for all s∗ ∈ [Ot, Ct], by definition of a

Brownian motion.
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speaking the term integrated volatility refers to the square root of IVt, in this paper we interchangeably

use both integrated variance and volatility to refer to IVt.

3.2 Overnight-Adjusted Realized Variance Estimators

This section discusses the ex post estimation of the integrated variance, IVt, using high frequency

(intraday) prices corresponding to day t. The object of interest, IVt, can be cast as a time-varying

parameter and the estimation approaches outlined below are model-free or nonparametric.

Among the model-free ex post measures of IVt available, the most popular is the realized variance

computed as the sum of the M squared returns corresponding to equal-length (e.g., 5-minute) intervals

RVt =

M∑
j=1

r2j,t, (7)

where rt,j ≡ pt,j − pt,j−1 is the jth intraday return on day t. Under certain conditions (e.g., absence

of jumps) it can be shown that RVt → IVt asymptotically as M → ∞. More often than not, this

estimator has been computed from returns spanning the open to close period since it is typically

deployed in the context of individual stocks or equity cash indices that are only traded for part of the

day (i.e. daytime period). It can be shown that the open-to-close RVt can underestimate in practice

(finite M) the true notional daily volatility IVt, as defined in (3), because it does not span a full 24-

hour period.11 The existing empirical literature on equity market volatility has taken different stances

on how to incorporate overnight information into a daily realized volatility estimator.12

An ad hoc solution consists of scaling the RVt measure upwards so that it spans a 24 hr period

RV SC
t =

∑T
t=1 r

2
d,t +

∑T
t=1 r

2
o,t∑T

t=1 r
2
d,t

RVt, (8)

11This criticism extends to alternative high-frequency measures of daily risk including the realized bipower variation

that also converges in probability to the integrated variance, and kernel-based realized variance estimators such as those

proposed by Barndorff-Nielsen et al. (2008) to mitigate market microstructure noise. The latter is especially an issue at

ultra-high frequencies finer than the 5-minute. See McAleer and Medeiros (2008) for a survey.
12Some papers model directly the open-to-close return alongside the realized variance computed from intraday squared

returns entirely ignoring the overnight period (Brownlees and Gallo, 2010; Noureldin et al., 2011; Chevallier et al., 2011;

Shephard and Sheppard, 2010; Liu and Maheu, 2009; Fuertes et al., 2009).
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which has been adopted by Martens (2002), Fleming et al. (2003), Koopman et al. (2005), and

Angelidis and Degiannakis (2008a) among others.

A different approach is to treat the overnight return as one more squared summand (+ON) along-

side the M intraday returns from market open to close as follows

RV +ON
t = r2o,t + r21,t + r22,t + ...+ r2M,t = r2o,t +RV t, (9)

which has been followed, for instance, by Martens et al. (2009), Bollerslev et al., (2009), de Pooter et

al. (2008), Becker et al. (2007), Giot and Laurent (2004), Martens (2002) and Blair et al. (2001).

More formally, in an attempt to make the resulting realized variance estimator more accurate,

Hansen and Lunde (2005) derive weights for the overnight return and the sum of squared intraday

returns. In particular, their overnight-adjusted realized variance is given by

RV HL
t = ω∗1r

2
o,t + ω∗2RV t, (10)

where ω∗1 and ω∗2 are the solution to the optimization problem min
ω1,ω2

var(RV HL
t ), s.t. ω1µ1 +ω2µ2 = µ0

where µ1 ≡ E[r2o,t], µ2 ≡ E[RV t] and µ0 ≡ E[IVt], t = 1, ..., T . Thus their procedure aggregates the

overnight return and the sum of intraday returns (all in squared form) with weights defined as those

that produce the most efficient realized variance estimator. The weighting scheme put forward by

Hansen and Lunde (2005) offers an attractive alternative to naive combinations such as that given

by (ω1, ω2) = (1, 0) that obviates the information coming from the overnight return, and combination

(9) given by (ω1, ω2) = (1, 1) that effectively amounts to treating the 17.5 hr overnight return (from

4:00pm to 9:30am) in the same way as each of the 5-minute intra-day returns.13

3.3 Conditional Daily Mean and Variance Forecasts

We now discuss two modeling approaches for the integrated mean and variance components of the

daily return process that differ in the conditioning information set. The models either exploit the

13Ahoniemi and Lanne (2012) compare the above realized variance estimators using Patton’s (2011) testing framework

by adopting the daily squared return as unbiased proxy for the true daily volatility. Their findings suggest for the S&P

500 index that the weighting scheme of Hansen and Lunde (2005) provides the most accurate RV estimator.
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available (high-frequency) information up to the closing of day t − 1, the sigma-algebra =t−1, or

further information up to the opening of day t, the sigma-algebra =Ot .

Let us assume that the overnight and daytime return data generating processes (DGP) are

ro,t = µo,t|t−1 + εo,t, (11a)

with µo,t|t−1 ≡ E[ro,t| =t−1] the conditional mean of the overnight return, and

rd,t = µd,t|t−1 + εd,t, (11b)

with µd,t|t−1 ≡ E[rd,t | =t−1] the conditional mean of the daytime return. The conditional variances

of ro,t and rd,t are, respectively, IVo,t|t−1 ≡ E[ε2o,t| =t−1] and IVd,t|t−1 ≡ E[ε2d,t| =t−1]. In line with the

continuous-time framework presented in Section 3.1, it is important to note that Cov(ro,t, rd,t| =t−1) ≡

E[εo,tεd,t| =t−1] ≡ IVo,d,t|t−1 can be different from zero. This is because by generating the forecast

at time t − 1 (i.e., given =t−1) both ro,t and rd,t are random variables. Further, by simple algebra

it can be shown that the conditional covariance IVo,d,t|t−1 =
∫ Ot
Ct−1

∫ Ct
Ot
E[σo,sσd,s∗dWo,sdWd,s∗ | =t−1]

is, under the minimal regularity assumptions of independence between the spot volatility processes

and the corresponding Brownian motions, equal to
∫ Ot
Ct−1

∫ Ct
Ot
E[σo,s| =t−1]E[σd,s∗ |=t−1]ρss∗ds∗ds where

ρss∗ is the spot correlation process as defined above after equation (4).

Finally, noting that rt = ro,t + rd,t, by simple algebra the DGP of daily returns can be expressed

as rt = µt|t−1 + εt with εt = εo,t + εd,t. The conditional mean µt|t−1 ≡ E[rt| =t−1] is given by

µt|t−1 = µo,t|t−1 + µd,t|t−1, (12)

and the conditional variance process IVt|t−1 ≡ V (rt| =t−1) = E[ε2t | =t−1] is decomposed as

IVt|t−1 = IVo,t|t−1 + IVd,t|t−1 + 2IVo,d,t|t−1. (13)

In order to make the above expressions operational, i.e. to obtain forecasts µ̂t|t−1 and ÎV t|t−1,

three data histories denoted {ro,1, ro,2, ..., ro,t−1}, {rd,0, rd,1, ..., rd,t−1} and {IV1, IV2, ..., IVt−1} can be

used as conditioning set =t−1. Whereas the first two (return) histories are derived from observed
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market prices, this is not the case for the third (variance) history because the IV process is latent.

However, the latter can be proxied ex-post by the realized variance using intraday (e.g., 5-minute)

returns), that is, by the time-series {RV1, RV2, ..., RVt−1}.14

A risk manager can generate the day-ahead VaR limits either at the market close time Ct−1 or at

the next day market open time Ot; the choice of the latter over the former has interesting implications.

The conditional mean forecast of the daily return (or profit and loss) distribution constructed at Ot

is given by E[rt|=Ot ] = ro,t + µd,t|Ot , and can differ from E[rt|=t−1] in (12). For the daily conditional

variance of the return distribution, the risk manager has IVt|Ot = IVd,t|Ot , that can be different from

IVt|t−1 in (13). Interestingly, if the risk managers produces the equity VaR limits for day t at time Ot,

he loses any forecasting power coming from the conditional covariance between overnight and daytime

returns, and instead relies on the information content of the actual overnight previous close-to-open

return ro,t. This conditioning approach (on =Ot) implicitly hinges on the assumption that the market

is efficient and pOt reflects all available overnight news. This may not be the case if, for instance, in

the context of stock index data, the open price suffers from staleness. The staleness is exacerbated

when the proportion of small-cap, low-trading activity companies in the index is larger.

In order to materialize IVt|t−1 in (13) as a forecast, we propose a bivariate modeling approach for

the overnight and intraday segments of the day. In both segments, we allow for asymmetry or the

statistical ‘leverage effect’ in the conditional variance equation and asymmetry and leptokurtosis in

the innovations. For the latter we adopt a skewed Student-t density following previous studies (e.g.,

Angelidis and Degiannakis, 2008a; Giot and Laurent, 2004).15 Given the three time series forming

the information set, =t−1 ≡ {ro,1, ..., ro,t−1; rd,1, ..., rd,t−1;RV1, ..., RVt−1}, the conditional integrated

variance of the overnight return cannot be observed even ex post. In order to forecast it, we follow

Andersen et al. (2011) who note the strong volatility clustering of the overnight return and advocate

a GARCH framework to model it. Conditionally on =t−1, we fit by quasi maximum likelihood (QML)

14Barndorff-Nielsen and Shephard (2002) show that realized variance converges to integrated variance at rate
√
M .

15The computations are carried out in Oxmetrics 6 using the G@RCH 6.1 package for the overnight modeling and the

second step involved in daytime modeling, and the ARFIMA 1.04 package for the daytime modeling.
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two equations to characterize the conditional mean and variance, respectively, of the overnight return

process: an autoregressive (AR) model and the threshold GARCH (TGARCH) model of Glosten,

Jagannathan, and Runkle (1993), expressed as

ro,t = a0 + a1rd,t−1 + b1ro,t−1 +
√
ho,t · εo,t (14a)

ho,t = α0 + α1ε
2
o,t−1 + β1ho,t−1 + γ1I

−
t−1ε

2
t−1 (14b)

where εo,t ≡
√
ho,t · εo,t, and the standardized innovation εo,t is i.i.d. skewed Student-t(1, 0, ξo, ηo)

with ξ0 and ηo the unknown parameters that capture the degree of asymmetry and fat tailedness,

respectively, in the overnight return distribution; εt are innovations in a standard AR(1) model for

the daily return rt; the asymmetry indicator function is defined as I−t = 1 if εt < 0 and I−t = 0

otherwise; γ1 > 0 implies that a large negative innovation on day t − 1 (i.e., bad news) increases the

subsequent conditional volatility of overnight returns more than a large positive innovation of the same

magnitude. Second, the information set =t−1 is exploited to obtain forecasts for the conditional mean

and variance of the daytime return process as follows. We fit an AR equation to the open-to-close

returns and a long memory ARFIMA(0, d, 1) equation to the realized variance, expressed as16

rd,t = a0 + a1rd,t−1 + b1ro,t−1 +
√
σd2 ·RVt|t−1 · εd,t (15a)

(1− L)d(lnRV t − τ0 − τ1rt−1 − τ2I−t−1rt−1) = (1 + θL)ut (15b)

where the the standardized innovation εd,t is i.i.d. skewed Student-t(0, 1, ξd, ηd), the innovation ut is

i.i.d.(0, σ2u) and the asymmetry indicator function is defined I−t = 1 if rt < 0 and I−t = 0 otherwise;

parameter values τ2 < 0 indicate that bad news increase the future daytime volatility more than good

news. This conditional variance modeling approach is motivated by the stylized long memory and

log-normality properties of the realized variiance. The AR-ARFIMAX parameters can be consistently

estimated following Giot and Laurent’s (2004) two-step approach. First, equation (15b) is estimated

16Other specifications that have been used in the empirical finance literature to approximate the long memory properties

of the realized volatility are Corsi’s (2004) heterogeneous autoregressive (HAR) model and Ghysels et al.’s (2004) MIxed

Data Sampling (MIDAS) model both of which combine information sampled at different frequencies.
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by ML under a normality assumption for ut. Second, equation (15a) is estimated by QML under the

assumption that all the dynamics in the conditional variance is captured by the ARFIMA model.

This bivariate modeling framework can account for dynamics in the conditional integrated co-

variance between ro,t and rd,t, denoted IVo,d,t|t−1. Different modeling strategies ranging from the

non-parametric J.P.Morgan RiskMetrics EWMA approach, to fully parametric approaches such as the

BEKK model of Engle and Kroner (1995), or further refinements provided, for example, by Kroner

and Ng (1998), can be employed to obtain conditional covariance forecasts. Engle (2002) proposes a

two-step dynamic conditional correlation (DCC) framework based on individual GARCH processes,

although as noted by Engle (2002; p.342): “Nothing would change if this was generalized.” We extend

the DCC model in this vein, namely, the overnight conditional variance is of GARCH type whereas

the daytime conditional variance is of ARFIMA realized volatility type. Formally, we have

qo,d,t = ρo,d(1− α− β) + αεo,t−1εd,t−1 + βqo,d,t−1, (16)

with εo,t−1 and εd,t−1 denoting the standardized overnight and daytime innovations consistently esti-

mated via the AR-TGARCH and AR-ARFIMA model formulations (13) and (14), respectively, qo,d,t

is the conditional correlation of those innovations and ρo,d ≡ E(εo,t ·εd,t) the unconditional correlation.

Mean reversion of the covariance process follows from α+ β < 1.17 The conditional covariance of the

unstandardized innovations, εo,t and εd,t is IVo,d,t = qo,d,t
√
RVt × ho,t.

An alternative to this novel bivariate modeling proposal is to incorporate the overnight surprise into

the realized variance prior to modeling. Effectively, this strategy amounts to bundling the squared

previous-close to open return with the summation of daytime high-frequency (5 minute) squared

returns.18 Now the overnight-adjusted realized volatilities discussed in Section 3.2, RV SC
t , RV +ON

t

and RV HL
t , replace the time-series RVt in the ARFIMA specification (15b). The daily conditional

17J.P.Morgan’s RiskMetrics approach based on an EWMA filter amounts to an integrated DCC (IDCC) process,

namely, α+ β = 1 in (16), which gives qo,d,t = (1− λ)
∞∑
j=1

λnεo,t−jεd,t−j with λ = 0.94 for daily data.

18A simpler approach used in a number of papers amounts to ‘mismatching’ a conditional mean model for the close-

to-close return with a conditional variance model for realized variance computed from open-to-close intraday returns

(Brownlees and Gallo, 2010; Wu, 2011; Corsi et al., 2008; Thomakos and Wang, 2003; Andersen et al., 2001).
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mean forecast µt|t−1 comes from a short-memory AR model fitted to the close-to-close return under

the assumption, as before, that the dynamics in the conditional variance is long-memory ARFIMA

type. In the context of the overnight-adjusted measure RV HL
t , the model is

rt = c0 + c1rt−1 +
√
σ2 ·RV HL

t|t−1 · εt (17a)

(1− L)d(lnRV HL
t − τ0 − τ1rt−1 − τ2I−t−1rt−1) = (1 + θL)ut (17b)

where the standardized daily innovation εt is i.i.d. skewed Student-t(0, 1, ξ, η); likewise for RV +ON
t

and RV SC
t . This approach is simpler than the bivariate but more restrictive in that it precludes the

modeling of the potentially different dynamics in the overnight and daytime return processes, and the

conditional covariance between them. Nevertheless, overnight-adjusted measures are widely employed

in the empirical high-frequency finance literature (see e.g. Blair et al., 2001; Martens, 2002; Giot and

Laurent, 2004; Koopman et al. 2005; Angelidis and Degiannakis, 2008a; Fuertes and Olmo, 2012).

An alternative framework for a risk manager to set day-ahead VaR-based equity trading limits is

to adopt =Ot as conditioning information set. Effectively, this amounts to constructing the VaR limits

for day t at the market opening of day t when the overnight return ro,t ≡ pOt−pCt−1 is known. Hence,

the only uncertainty left pertains to the daytime segment ahead, IVt|Ot = IVd,t|Ot , since the overnight

segment has elapsed and thus, by definition, IVo,t|Ot = IVo,d,t|Ot = 0. In this ex post approach, the

forecasts µd,t|Ot and IVd,t|Ot are obtained through an AR-ARFIMA specification which is a small

variation of (14) to exploit the fact that the overnight return for day t is part of the information set

at the time the VaR limits for day t are generated. Formally, the model is

rd,t = a0 + a1rd,t−1 + b1ro,t−1 + b0ro,t +
√
σd2 ·RVt|Ot · εd,t (18a)

(1− L)d(lnRV t − τ0 − τ1rt−1 − τ2I−t−1rt−1 − τ3ro,t − τ4I
−
o,tro,t) = (1 + θ1L)ut (18b)

and allowing, like before, for a skewed Student-t(0, 1, ξd, ηd) density for the standardized daytime

innovations εd,t. A number of studies in the literature adopt a modeling strategy that broadly falls
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within this framework in the sense that they work with realized variance measures computed from open-

to-close intraday returns matched with daily open-to-close returns (Chevallier et al., 2011; Noureldin

et al., 2011; Liu and Maheu, 2009; Fuertes et al., 2009).

3.4 Competing Location-Scale VaR Models

Next we discuss how the above forecasts can be used as building blocks in location-scale VaR models

to set daily equity trading limits. This is a relevant risk management application given that banks

routinely use VaR to get a sense of the riskiness of the trading behavior of their business lines or

‘desks’, and to set appropriate trading limits for them to control overall risk. The bivariate-based VaR

at nominal coverage level α conditional on the information set =t−1 can be expressed as

V aRbivariatet|t−1,α = µt|t−1 +
√
IVt|t−1F

−1
ε (α) (19)

where the first term µt|t−1 is obtained as the sum of two forecasts from the overnight and daytime AR

equations, (14a) and (15a), respectively, µt|t−1 = µo,t|t−1 + µd,t|t−1 according to (12); the second term

IVt|t−1 is obtained by aggregating the three forecasts corresponding, respectively, to the TGARCH,

ARFIMA and DCC equations, IVt|t−1 = IVo,t|t−1 + IVd,t|t−1 + 2IVo,d,t|t−1, according to (13); and

F−1ε (α) is the α-quantile of the skewed Student-t distributed standardized innovation εt.

Alternatively, in the spirit of what we call above the bundling approach, one can construct VaR

limits based on overnight-adjusted realized volatility measures. The corresponding VaR forecast is

V aRbundlet|t−1,α = µ̃t|t−1 +

√
ĨV t|t−1F

−1
ε (α) (20)

with µ̃t|t−1 the conditional mean forecast of the close-to-close return, obtained from the AR equation

(17a), and ĨV t|t−1 the integrated daily variance forecast obtained from the ARFIMA equation (17b).

In our third approach, equity VaR limits for day t are set using information up to the opening of

the market, denoted =Ot . The corresponding VaR forecast is

V aRexpostt|Ot,α = µt|Ot +
√
IVt|OtF

−1
εd

(α), (21)
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with µt|Ot = ro,t+µd,t|Ot and IVt|Ot = IVd,t|Ot since the overnight return is now known and becomes an

ex post observation. The daytime conditional mean forecast µd,t|Ot is obtained from the AR(1) equation

(18a) above and the daytime conditional variance forecasts ÎV d,t|Ot from the ARFIMA equation (18b);

F−1εd
(α) is the α-quantile of the skewed Student-t distributed standardized innovation εd,t.

4 Backtesting the Performance of VaR Forecasts

Let the in-sample (estimation) period comprise P days and the out-of-sample (evaluation) period

comprise n days with P +n = T . Let θ0 denote the true parameter vector of the location-scale model

considered. A correctly specified α-th conditional VaR model of the portfolio returns rt is defined as

P (rt ≤ V aRt,α(θ0) | =t−1) = α, almost surely (a.s.), α ∈ (0, 1), ∀t ∈ Z, (22)

a moment restriction often used in theoretical discussions (see e.g., Christoffersen et al., 2001; Engle

and Manganelli, 2004; Gourieroux and Jasiak, 2006; Koenker and Xiao, 2006; Fuertes and Olmo,

2012). Let Hitt,α(θ0) ≡ 1(rt ≤ V aRt,α(θ0)) denote the out-of-sample hits or exceedances sequence. If

the conditional VaR model is correctly specified out-of-sample then it follows that the expected value

of the hits conditional on =t−1 is α. Definition (22) also implies independence or that the demeaned

sequence of VaR violations, Hitt,α(θ0) ≡ 1(rt ≤ V aRt,α(θ0)) − α, does not depend on the available

information set =t−1 which includes previous hits, past daily returns, and volatilities. Intuitively,

violations of the VaR should be happening in a random, unpredictable manner. In other words, if it

can be predicted that the VaR violations will increase in the near future, then this information should

be included in the model used to compute the equity trading VaR limits.

In practice, the parameter vector θ0 is not known and needs to be estimated from the data. Let

θ̂P,t−1 denote a rolling estimator of θ0 obtained over a moving window of P observations; a natural

way to assess the validity of condition (22) is by implementing a dynamic quantile (DQ) test of the

null hypothesis H0 : E[Hitt,α(θ̂P,t−1) | xt−1(θ̂P,t−1)] = 0, with xt−1(θ̂P,t−1) a vector of k regressors,

including a constant, that subsumes all relevant information, =t−119. Engle and Manganelli (2004)

19In order for this test to be properly defined the estimation sample size P needs to be fixed which rules out the
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propose a Wald type statistic for assessing (22) which can be cast as a joint test for the statistical

significance of the coefficients in the following linear probability model20

Hitt,α(θ̂P,t−1) = xt−1(θ̂P,t−1)γ + vt, t = P + 1, . . . , T, n = T − P (23)

with Hit(θ̂P,t−1) a n × 1 vector obtained from the sequence of ex post out-of-sample hits or VaR

violations, γ a k×1 parameter vector and vt a zero-mean iid error sequence. The conditional coverage

hypothesis is defined as H0 : γ0 = γ1 = ... = γk−1 = 0 which can be tested, using the terminology

introduced in Engle and Manganelli (2004), by the following dynamic quantile (DQ) statistic;

DQ = n
γ̂′n[Mn(θ̂P )]γ̂n
α(1− α)

(24)

where γ̂n is the OLS estimator of γ in (23), and Mn(θ̂P ) = 1
n

T∑
t=P+1

x′t−1(θ̂P,t−1)xt−1(θ̂P,t−1) a k × k

matrix. The test statistic converges in distribution to a χ2
k density under H0 as n→∞.

The binary character of the hits sequence may imply the existence of heteroscedasticity in the error

term vt in the linear probability model (LPM) that underlies the original test of Engle and Manganelli

(2004), equation (23). To correct for this heteroscedasticity in the DQ test, Berkowitz et al. (2011)

propose a refinement of the method based on the logit version of (23). Probit or logit regressions are

generally more convenient than LPMs because they bound the fitted values from the binary model

(probabilities) to be between 0 and 1. We adopt the dynamic binary (DB) probit regression

E[1(rt ≤ V aRt,α(θ̂P,t−1)) | xt−1(θ̂P,t−1)] = Φ(xt−1(θ̂P,t−1)β), t = P + 1, . . . , T (25)

with Φ(·) the cumulative standard Normal distribution and β ≡ (β0, β1, ..., βk−1)
′ the vector of regres-

sion parameters. Although the probit model is already deployed in Taylor (2007) in a VaR backtesting

context, a formal analysis of its small sample properties (i.e. size and power) has only been provided

adoption of recursive estimation windows for θ0 for which P →∞. Thus the uncertainty from using estimated regressors

is naturally accounted for. Giacomini and Komunjer (2005) follow the same approach for VaR encompassing inference.
20Gaglianone et al. (2011) discuss an alternative testing strategy for (22) based on quantile regressions in order to

assess whether the conditional quantile of interest is given by the proposed V aRt,α(θ0) model. Other conditional coverage

tests have been developed based on the duration between consecutive violations; see e.g. Berkowitz et al. (2011), and

Candelon et al. (2011).
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recently by Dumitrescu et al. (2012). Their study shows that the probit-based backtesting appears

more robust to estimation risk, with less size distortions and better power than the original DQ test,

and also that likelihood ratio (LR) tests exhibit better small sample properties (in terms of power)

than Wald tests in the probit context. Under stationarity of the regressors, the estimation of probit

models can be performed by ML to obtain consistent and asymptotically normal parameter estimators.

In the probit setting, the correct conditional coverage criterion encapsulated in (22) amounts to

E[1(rt ≤ V aRt,α(θ̂P,t−1)) | xt−1(θ̂P,t−1)] = Φ(β0) = α (26)

which can be stated as H̃0 : β0 = Φ−1(α), β1 = ... = βk−1 = 0. In contrast to the regression model

(23), the dependent variable in (25) is not demeaned, implying that under the null hypothesis, the

correct specification of the conditional α−quantile process is defined by the restrictions β0 = Φ−1(α)

and β1 = ... = βk−1 = 0. This joint hypothesis test is implemented via the LR statistic

DB = 2(L − L0) (27)

with L =
T∑

t=P+1

[Hitt,α(θ̂P,t−1)ln Φ(xt−1(θ̂P,t−1)β̂n)+(1−Hitt,α(θ̂P,t−1))ln (1−Φ(xt−1(θ̂P,t−1)β̂n))] the

log-likelihood where β̂n is the ML estimator of β. Under the null hypothesis, L0 =
T∑

t=P+1

[Hitt,α(θ̂P,t−1)ln α+

(1−Hitt,α(θ̂P,t−1))ln (1− α)], and DB converges in distribution to a χ2
k as n→∞.

We follow Engle and Manganelli (2004) and Dumitrescu et al. (2012) in adopting as regressors

xt−1(θ̂P,t−1) = (1, rt−1, r
2
t−1, V aRt−1,α(θ̂P,t−1), Hitt−1,α(θ̂P,t−1)).

This vector of regressors controls for dependence between hits and past returns, past volatility and

past VaRs. The inclusion of lagged hits seeks to control for potential autocorrelation of the hits.

The specific choice of the vector xt−1(θ̂P,t−1) is not without importance. One of the main differences

between the above framework for testing the correct specification of the VaR model and other standard

backtesting procedures lies in the choice of the conditioning information set. Thus the very popular

conditional coverage probability likelihood ratio test of Christoffersen (1998) or the spectral density

21



test and duration based tests discussed in detail in Berkowitz et al. (2011) use an information set only

given by the sequence of lagged hits. These tests, in turn, do not exhibit power to reject the existence

of dependence of the VaR exceedances with other relevant variables.

5 Empirical Application

This section presents our equity index data, the parameter estimates of the conditional mean, variance,

and correlation models, and the VaR backtesting results.

5.1 Data and Descriptive Statistics

Two major stock market indices are chosen as illustrative equity portfolios: S&P 500, by far the most

common benchmark for funds (mutual funds, ETFs, and pension funds) that identify themselves as

large cap, and Russell 2000, the typical benchmark for small cap funds. The observations are 5-minute

quotations from 9:30-16:00 Eastern time (EST) which amounts to M = 78 intraday intervals. The

observed opening price on day t is the first price recorded after 9:30. The jth intra-day price pt,j

with j = 1, ...,M − 1 is defined as the last seen tick before the jth 5-minute mark. The day t closing

price pCt ≡ pt,M is defined as the last price observed before 16:00. The two equity portfolios are

observed over the most recent 15-year period available from November 12, 1997 to September 31,

2011 (T = 3491 trading days). As of September 2011, the S&P 500 index comprises roughly 20%

Nasdaq-traded (89/500) and 80% NYSE-traded (411/500) companies, whereas for the Russell 2000,

the breakdown is roughly 60% Nasdaq (1250/2000) and 40% NYSE (750/2000). Measured by trading

volume, there is a marked difference between the two indices. The average daily volume of trading on

S&P 500 futures contracts is about 16 times larger than that on Russell 2000 futures.

Figure 1 plots daytime and overnight returns and clearly reflects the waves of panic sent into the

stock market by the disastrous collapse of Lehman Brothers, and the effective nationalization of Fanny

Mae and Freddie Mac in September 2008. Volatility remains high in the initial post-Lehman months,

and gradually starts subsiding until a second cluster of high volatility is triggered around April 2010,
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the month when the Securities and Exchange Commission (SEC) charged Goldman Sachs with fraud

in structuring and marketing of a collateralized debt obligation (CDO) tied to subprime mortgages.

A final volatility cluster is observed in the final month of the sample (September 2011) when terms of

a tranche of bailout funds needed to prevent the default of Greece were discussed. Our out-of-sample

period begins on September 2, 2008 (n = 778 days), an important landmark of the late 2000s global

financial crisis to make the forecasting task more challenging.21,22

[Insert Figure 1 around here]

Table 1 summarizes the daily overnight and daytime return distribution over pre- and post-Lehman

samples spanning, respectively, the periods 12/11/1998 to 29/08/2008, and 02/09/2008 to 31/09/2011.

[Insert Table 1 around here]

For both indices, and over both sub-periods, the findings confirm previous stylized facts: stock

return volatility is substantially higher in daytime (trading) than overnight (non-trading) periods.

However, both daytime and overnight return variances increase dramatically in the post-Lehman

period. The more negative skewness and higher kurtosis for overnight returns than daytime returns

observed during the pre-Lehman period is notably lessened during the post-Lehman crisis period, when

the daytime returns also become markedly negatively skewed and kurtosed. The kurtosis of overnight

returns is about three times larger than that of daytime returns in the pre-Lehman period, but becomes

roughly similar for both segments of the day during the post-Lehman period. Overnight and daytime

returns pertaining to the same day (ro,t, rd,t) are strongly positively correlated throughout, but there

21Fannie Mae and Freddie Mac, two U.S. government sponsored enterprises, owned or guaranteed nearly $5 trillion in

mortgage obligations at the time they were placed into conservatorship by the U.S. government on September 7. Lehman

Brothers filed for Chapter 11 bankruptcy protection on September 15.
22The quotes are from Disk Trading http://www.is99.com/disktrading/. We follow most of the existing literature in

adopting the 5-minute sampling frequency. This is the typical sampling interval of choice because, for highly liquid assets,

it has been shown to be short enough for the daily volatility dynamics to be picked up with reasonable accuracy (small

estimation error) and long enough for the adverse effects of market microstructure noise (e.g., bid-ask bounce, discrete

price observations, irregular trading) not to be excessive.
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is a substantial increase in correlation from the pre- to the post-Lehman periods. Both returns exhibit

(1st order) autocorrelation, typically negative, but in milder form daytime than overnight. Both

autocorrelations increase in the post-Lehman period.

The overnight and daytime squared returns are summarized in Panel B of Table 1. To make the

comparison more informative, we report the hourly volatility as the mean squared return divided by

the number of hours spanned by each segment of the day, 17.5 hr (overnight) and 6.5 hr (daytime).

Return volatility is higher daytime than overnight, which is well aligned with market microstructure

wisdom that information flow is greater during trading than during non-trading hours. The volatility

autocorrelation function shows a much slower decay at daytime (i.e. more persistence) than overnight.

Both volatilities increase dramatically from the first to the second sample periods. Overall the statistics

in Table 1 reveal important differences in the overnight and daytime return distributions.

Table 2 summarizes the distribution of realized variances, baseline and overnight-adjusted, which

proxy the daily integrated volatility. The baseline measure is computed as in Eq. (7), and the overnight-

adjusted measures, RV SC , RV +ON and RV HL, correspond with Eqs. (8) to (10).

[Insert Table 2 around here]

All distributions show high positive skewness and kurtosis, corroborating that investors face non-

normally distributed risks. Skewness and kurtosis are, by construction, identical for RVt and RV SC
t .

The means of RV HL
t and RV +ON

t are the same by construction. The coefficient of variation, or the

relation of standard deviation to the mean, is always the lowest for RV HL, reflecting the fact that

the weights for r2o,t and RVt are determined in Hansen and Lunde’s (2005) approach by minimizing

var(ω1r
2
o,t + ω2RVt).

23 Subsequently, we model the logarithmic realized volatility series, which is

standard in the empirical finance literature given that the Gaussianity assumption is more suitable for

logs than for levels. In untabulated results, the skewness of the log realized volatilities (baseline and

23Note also that the coefficient of variation is equal for RVt and RV SCt by construction given that the scaled estimator

is a linear transformations of RVt. The coefficient of variation is larger in the out-of-sample period for all realized variance

measures, indicating a decrease in the signal-to-noise ratio during the late 2000s global financial crisis period.
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overnight-adjusted) is close to zero, with a range [-0.14, 0.45] for the two indices, and their kurtosis

coefficient is close to 3 for both pre- and post-Lehman periods.

Over the entire 15-year period, the percentage of daily volatility that occurs during the inactive

period, as proxied by the ratio r2o,t/(r
2
o,t +RVt) is 5.95% for the Russell 2000 and 2.83% for S&P 500.

For Russell, the ratio more than doubles from 4.70% for the pre-Lehman period (2713 days) to 10.28%

in the post-Lehman period (778 days); the increase is milder for S&P 500, from 2.77% to 3.02%.

5.2 Conditional Mean, Variance and Correlation Models

The estimation results and diagnostics of the considered models over the entire sample period with

T = 3491 days are reported in Table 3. Although these estimates are not used for forecasting, since all

models are re-estimated for each rolling window sample (with P = 2713 days), the reported estimation

results provide insights about the ability of the models to capture various stylized facts.

[Insert Table 3 around here]

The model estimates in Panel A, top exhibit, referring to the overnight period suggest: i) asym-

metry in the conditional variance (leverage effect) as borne out by a significantly positive parameter

γ1, ii) fat-tailedness in standardized overnight returns as reflected in a small dof parameter η0, iii)

the sign of ln(ξo) indicates that the distribution of innovations to the overnight portfolio returns is

negatively skewed. These findings justify the skewed Student-t density assumption for the innovation

process. The sufficient condition for stationarity, γ1 < 2(1− α1 − β1), is satisfied for both indices.

The model estimates in Panel A, middle exhibit, and Panel C, both of which refer to the daytime

period, suggest: i) asymmetry in volatility as borne out by a significantly negative τ2 parameter in

Panel A and significantly negative τ2 and τ4 in Panel C, ii) fat-tailedness but less so than in overnight

returns as borne out by a larger dof parameter ηd of the residual Student-t density, iii) more marked

negative skewness as suggested by the parameter ln(ξd) of the Student-t density, iv) the long-memory

parameter d confirms the slow hyperbolic autocorrelation decay of logarithmic realized volatility; in

25



all cases, it is statistically different from 1/2. For all models, the asymmetry in daytime volatility and

the fat-tailedness of daytime innovations appear stronger for the S&P 500 than for the Russell 2000.

The long-memory parameter d < 0.5 suggests very strong persistence of daytime volatility.

Likewise, the estimation results in Panel B referring to the daily close-to-close period suggest a

stronger response of volatility to bad news in the previous period than to good news. The model

estimates reported in the bottom exhibit of Panel A indicate that the sufficient stationarity condition,

α1 + β1 < 1, is satisfied for the dynamic conditional correlation.

5.3 VaR Predictions Combining Overnight and Intraday Information

We next proceed with the out-of-sample VaR forecasting exercise using a rolling estimation scheme.

The first VaR forecast is based on the estimator of the model parameter vector θ0 formed using infor-

mation from day 1 to P , denoted θ̂P , the second forecast is based on the estimator θ̂P+1 formed using

observations 2 through P+1, and so forth. The adjusted RV measures that require parameter estimates

(RV SC and RV HL) are calculated in a way that is consistent with the out-of-sample nature of the

forecasting exercise. More specifically, the weights needed to obtain, say, the first window {RV HL
t }t=Pt=1

are based on information up to day P , the second window {RV HL
t }t=P+1

t=2 exploits information from

day 2 through day P + 1, and so forth; likewise for RV SC . The fixed-length of the rolling window is

P = 2713 days and hence, the out-of-sample period contains n = 778 days (T ≡ P + n = 3491 days).

We present graphically the backtesting results over 279 rolling out-of-sample windows of fixed

length n = 500 days starting on 02/09/2008. Thus each backtesting outcome corresponds roughly

to a 2-year trading period. As these evaluation windows are rolled forward the practical implication

is that more observations from the very volatile post-Lehman period are incorporated in the model

parameter estimation. Figures 2 and 3 present for the S&P 500 and Russell 2000 indices, respectively,

backtesting p-values for the three VaR models, subsumed in equations (19), (20) and (21). The graphs

for the bundling approach are based on the overnight-adjusted RV HL measure.24

24The graphs for RV SC and RV +ON are omitted for space constraints since they are qualitatively similar, as borne

out by the summary set out in Table 4 below. Detailed results are available from the authors upon request.
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[Insert Figures 2 and 3 around here]

We compare the three parametric VaR models – bivariate, bundling and ex post – from the

perspective of correct out-of-sample VaR specification through the dynamic quantile (DQ) test of

Engle and Manganelli (2004) and a refinement based on the dynamic binary (DB) probit model. The

probit-transformed intercept Φ(β0) provides the empirical conditional coverage rate or the probability

that the actual losses are greater than the VaR limit conditional on the information (regressor) set.

The backtesting p-values reveal that all 3 modeling approaches are unsuccessful in producing VaR

forecasts that satisfy (22) in the initial post-Lehman days. In particular, the middle graphs for both

Russell 2000 (Figure 2) and S&P 500 (Figure 3) show that it takes longer for the VaRs obtained with

the bundling approach to start passing the backtesting (i.e., p-values above the 0.05 significance level

threshold). As more and more of the inmediate post-Lehman (very volatile) days are incorporated into

the in-sample estimation windows, the VaR backtesting results notably improve.25 Thus, changes in

market conditions can have an important influence on VaR model performance. The 1980-2011 analysis

of VaR forecasts in Frey et al. (2012) leads to a similar observation despite important methodological

differences with the present study; they forecast the entire return density via Markov Chain Monte

Carlo (MCMC) methods based on exponentially (non)affine stochastic volatility models.

Summary information on the DQ and DB probit backtesting outcome obtained dynamically over

279 out-of-sample windows is provided in Table 4. Panel A1 reports the average outcome
∑J
j=1 I(pj<0.05)

J

with J = 279, where I(pj < 0.05) is the indicator function equal to 1 if the backtesting was failed for

window j at the 5% significance level. Thus the reported figures represent percentage of rejections.

Next we compute the rejection rates similarly over the first 1/3J windows that capture the aftermath

25In unreported graphs (available from the authors) we plotted the backtesting results over recursive out-of-sample

windows starting from n = 778 days which covers the entire out-of-sample period from September 2, 2008 to September

31, 2011 and gradually dropping one day at a time until n = 500 days which covers the period from October 8, 2009 to

September 31, 2011. These graphs have the advantage that n/P gradually falls over backtesting windows which reduces

the impact of estimation noise. On the other hand, the reported graphs have the advantage of making the comparison

over time more informative by keeping n fixed so that the results are not influenced by small sample size and power

properties of the tests. Both types of graphs give qualitatively the same results.
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of post-Lehman debacle (last out-of-sample window begins on January 13, 2009) and the remaining

2/3J windows that represents a relatively calmer post-Lehman period. Panels A2 and A3 report the

rejection rates corresponding to these two subperiods, respectively. This allows us to compare, on the

basis of simple snapshot figures, the overall forecast accuracy of the three tail risk models.

[Insert Table 4 around here]

The summary frequency of backtesting rejections over all 279 out-of-sample windows (Panel A1)

suggests that the bivariate approach excels for Russell 2000 whereas in contrast the ex post approach

produces less rejections for S&P 500. Moreover, the bivariate and ex post VaR modeling approaches

clearly dominate the horserace for both small cap (Russell 2000) and large cap (S&P 500) portfolios.

This is an important finding given that the bundled estimators have become the de facto way of

dealing with the overnight period in empirical high-frequency studies. The relative lack of success

of the bundling VaR approach to capture tail risk behavior is to some extent unsurprising, given

that it implicitly assumes that the overnight squared returns are generated by the same process as

the daytime realized volatility. Among the three overnight-adjusted realized volatility measures, the

summary backtesting results in Panel A1 of Table 4 indicate that RV HL dominates the other two,

RV +ON and RV SC . When considering only the first 1/3 of the windows (Panel A2) which capture

the highly volatile aftermath of the post-Lehman debacle, or the last 2/3 of the windows (Panel A3),

a relatively calmer period, the previous findings remains unchallenged. Thus the outcome of the

horserace of overnight-adjusted VaR modeling approaches appears robust across market conditions.

The empirical conditional coverage (CC) probabilities shown in Figure 4 are also broadly in line

with the conclusions drawn above, namely, they are on average closer to the nominal coverage prob-

abilities for S&P 500 with the ex post method, and for the Russell 2000 with the bivariate method.

For Russell, the graphs show that the actual CC rates for the 5% VaR obtained through the ex post

approach are always well above the nominal coverage probability suggesting that the equity trading

VaR limits are always underestimated over the out-of-sample period. In contrast, the actual CC rates
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of the 5% VaR obtained through the bivariate modeling approach hover around the 0.05 nominal

coverage probability. For the S&P 500 index, the plots suggest that downside tail risk is underesti-

mated for the initial 30 out-of-sample windows reflecting the height of the post-Lehman aftermath

(the out-of-sample window crossing the 0.05 nominal coverage line begins on November 17, 2008) and

overestimated thereafter. The conditional coverage error or absolute deviation of the empirical CC

probabilities from the nominal coverage probability, α̂j − αj , is on average larger for the bundling

VaR than for the bivariate VaR in the case of Russell, and for the bundling VaR than for the ex post

approach in the case of S&P 500, representing underestimated VaRs in both cases.

The summary measures so far discussed give equal weights wj ≡ 1/J to all backtesting rejections.

The loss function of a risk manager may be more sophisticated and assign different importance to

different rejections: those associated with large deviations |α̂j−αj | would arguably be more worrisome.

Panel B of Table 4 reports the summary outcome of the dynamic backtesting exercise over J = 279

rolling windows where the term ‘weighted’ refers to the fact that each rejection receives a penalty

according to the absolute coverage error, i.e.
∑J

j=1 w̃jI(pj < 0.05) where w̃j are the standardized

weights (so that they add to unity) corresponding to wj ≡ |α̂j − αj |. Finally, the weighting of

the rejections in the final two exhibits of the table is asymmetric. Panel C1 presumes that the

underprediction of VaR limits is more worrisome (because it entails uncovered losses) for a risk manager

than the overprediction of VaR limits (which implies investment opportunity costs) and so the penalty

(or weight) is higher at |α̂j − αj | in the former case and lower at (α̂j − αj)2 in the latter case. Panel

C2 penalizes more heavily overpredictions than underpredictions instead. These weights are also

standardized to sum to unity. Reassuringly, the results are quite robust: the bivariate approach tends

to dominate for the Russell 2000 index and the ex post approach for the S&P 500 index.

The contrasting evidence for the two indices could relate to differences in the efficiency of price

discovery at the market open for stocks with different trading volumes. The fact that the bivariate

approach excels for the Russell 2000 may indicate that the opening quote for this small cap index fails

to adequately reflect the information released during non-trading hours. Hence, it is more effective for
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the risk manager to step back and set the VaR limits for day t at the closing of day t−1 on the basis of

conditional mean and (co)variance forecasts for the overnight and daytime return distributions, rather

than waiting until the market opens in order to observe the overnight return. For the S&P 500, the

opening price seems to convey the information accumulated during non-trading hours more efficiently.

This occurs despite the fact that not all stocks open for trading immediately at 9.30 AM, inducing

the price staleness and news spillover effects discussed above.

Barclay and Hendershott (2008) show that for Nasdaq stocks, opening prices are more efficient

for larger-volume stocks: the more heavily traded the stock, the more price discovery has shifted

from the opening price to the pre-open trading period. Importantly, a critical threshold of trading

volume is required to shift price discovery from the trading day to the pre-open. Thus, for the

most heavily-traded stocks, the opening price conveys more information. Our results are well in line

with the findings of Barclay and Hendershott (2008) given the clear difference in results for the two

indices. For small-cap stocks, which display smaller trading volumes, the opening price (and hence,

the observed overnight return from previous close to open) is less informative, making the bivariate

modeling approach more valuable for setting equity trading VaR-based limits.26

6 Conclusions

A task faced daily by risk managers is to establish forward-looking mark-to-market loss limits for

individual trading desks. Value-at-Risk (VaR) has become a standard risk control tool. In 1996, the

Basel II Accord gave regulatory recognition to the widespread use of VaR by banks by introducing a

VaR-based capital requirement for positions held for trading intent. Through parametric models, the

problem of downside tail risk prediction can be formulated as generating predictions for the conditional

26There is evidence that overnight information is disseminated more efficiently on Nasdaq compared to the NYSE due

to differences in the opening mechanisms of the exchanges (see Masulis and Shivakumar, 2002 and Greene and Watts,

1996). Both of the indices in our study contain component stocks listed on both exchanges. The marked difference in

the results for the two indices suggests that the effect of the trading volume is stronger than the effect of the trading

platform. In the latter case, the result could easily be reversed, as more S&P 500 constituents are traded on the NYSE,

and more Russell 2000 constituents are traded on Nasdaq.
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mean and variance of the return process, which are combined with an α-quantile from a sufficiently

general density to approximate departures from Gaussianity.

The present paper makes both theoretical and empirical contributions. We introduce the continuous-

time theory to motivate a bivariate approach to obtain VaR limits that involves separate forecasts

for overnight volatility, daytime volatility, and the covariance between daytime and overnight returns.

A non-zero covariance can be induced by delayed trading or ‘price staleness’ and ’news spillover’ at

market open. In our empirical section, we confront this bivariate modeling approach with two other

approaches for incorporating overnight information into tail risk prediction. One is the widely-used

approach in the empirical high-frequency finance literature of bundling together the overnight and

daytime information into single time-series of returns and realized volatility. The other is an ex post

approach that generates forecasts at market open once the overnight return is observed and can be

incorporated in the information set.

Our empirical illustration reveals that paying separate modeling efforts to the overnight and day-

time segments of the day appears beneficial for describing the tail behavior of Russell 2000 returns.

In contrast, for the S&P 500 returns, the ex post modeling approach produces the most effective VaR

limits. Such a contrast between the two indices may relate to the different levels of trading volume

of the constituent stocks. It has been shown in previous research that price discovery at the market

open is more efficient for high-volume stocks. Therefore, the large cap stocks in the S&P 500 index

may convey enough overnight information in their opening prices to make the index opening levels as

a whole quite informative. As a consequence, more accurate VaR-based trading limits are obtained

for the S&P 500 portfolio by simply including the observed overnight (squared) returns in the models’

conditioning information set as opposed to forecasting the day-ahead overnight return process.

Our VaR backtesting analysis suggests that the bundling approach widely used in academic research

to account for the overnight non-trading period can compromise the solvency of trading positions by

setting too low trading loss limits. These findings have clear implications for banks’ risk managers,

other practitioners, and researchers seeking to reliably predict downside tail risk.
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Appendix A

Proof of Proposition: We assume that the log-price process is driven by the following stochastic

differential equation:

dpt = {µ0,tdt+ σo,tdWo,t} 1(Ct−1 < t ≤ Ot) + {µd,tdt+ σd,tdWi,t} 1(Ot < t ≤ Ct) 0 ≤ t ≤ T.

Integrating the expression, we have

∆pt = pCt − pCt−1 =

∫ Ot

Ct−1

µ0,sds+

∫ Ot

Ct−1

σo,sdWo,s +

∫ Ct

Ot

µd,s∗ +

∫ Ct

Ot

σd,s∗dWd,s∗ .

Accordingly, the variance in the log-price process can be expressed as ∆pt = ro,t + rd,t, with

ro,t =

∫ Ot

Ct−1

µ0,sds+

∫ Ot

Ct−1

σo,sdWo,s,

and

rd,t =

∫ Ct

Ot

µd,s∗ +

∫ Ct

Ot

σd,s∗dWd,s∗ .

This equation can be decomposed as ro,t = µ0,t+εo,t, with µ0,t ≡
∫ Ot
Ct−1

µo,sds, and εo,t =
∫ Ot
Ct−1

σo,sdWo,s,

and rd,t = µd,t + εd,t, with µd,t ≡
∫ Ct
Ot
µd,s∗ds

∗ and εd,t =
∫ Ct
Ot
σd,s∗dWd,s∗ .

Let IVo,t ≡ V (
∫ Ot
Ct−1

σo,sdWo,s), IVd,t ≡ V (
∫ Ct
Ot
σd,s∗dWd,s∗) and IVo,d,t = Cov(ro,t, rd,t). To show

the decomposition in the proposition, we compute first IVo,t. We use a partition Ct−1 < s1 < s2 <

. . . < sn < Ot, then

V (

∫ Ot

Ct−1

σo,sdWo,s) = V

(
lim
n→∞

n∑
i=1

σo,si(Wo,si −Wo,si−1)

)
= lim

n→∞

n∑
i=1

σ2o,siE[
(
Wo,si −Wo,si−1

)2
] =

∫ Ot

Ct−1

σ2o,sds,

by the properties of the Brownian motion. Similar algebra shows that IVd,t ≡
∫ Ct
Ot
σ2d,s∗ds

∗. Finally,

to compute IVo,d,t we use that

IVo,d,t ≡ Cov(ro,t, rd,t) = E[ro,trd,t]− E[ro,t]E[rd,t].

Note that E[ro,t] = µo,t, since E[εo,t] = E[
∫ Ot
Ct−1

σo,sdWo,s] =
∫ Ot
Ct−1

E[σo,sdWo,s] = 0; σo,t is a determin-

istic process and it follows that E[σo,sdWo,s] = σo,sE[dWo,s] = 0, by the properties of the Brownian

motion. Similarly, we obtain that E[rd,t] = µd,t and then

E[ro,trd,t] = µo,tµd,t + µo,tE[εd,t] + E[εo,t]µd,t + E[εo,tεd,t],
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which is equal to µo,tµd,t+E[εo,tεd,t]. Finally, by the Law of Iterated Expectations constructed over the

sigma-algebra =Ot we have E[εo,tεd,t] = E[εo,tE[εd,t|=Ot ]] = 0. Therefore, IVo,d,t = 0 by construction,

and IVt = IVo,t + IVd,t.
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Table 1. Distribution of overnight and daytime returns. 

The table summarizes the empirical distribution of daily overnight and daytime returns (Panel A) and 
the corresponding volatility measure given by the squared return (Panel B) over the post-Lehman 
period from September 2, 2008 to September 31, 2011 and the preceding period from November 12, 
1997 to August 29, 2008. All returns are in percentages. The correlation structure section reports 
autocorrelations between the overnight return on day t and day t-1, between the daytime return on day 
t and day t-1, and the cross-correlation between the overnight return on day t and daytime return on 
day t. Q20(ACF) is the Ljung-Box statistic for the null of no autocorrelation up to 20 lags. *, ** and 
*** indicate significance at the 10%, 5% or 1% levels. 

Summary r o,t r d ,t r o,t r d ,t r o,t r d ,t r o,t r d ,t

statistics night day night day night day night day

Mean 0.020 0.000 0.007 0.005 -0.004 -0.014 -0.012 -0.004
Median 0.005 0.040 0.003 0.047 0.007 0.138 0.000 0.095
StDev 0.234 1.271 0.190 1.092 0.572 2.136 0.249 1.780
Skewness -0.525 -0.074 -0.249 -0.031 -0.283 -0.358 -0.254 -0.362
Kurtosis 19.80 4.026 14.99 5.600 6.930 6.015 7.774 8.586
Correlation structure:
r o,t- 1 -0.089 *** -0.028 -0.092 *** 0.001 -0.149 *** -0.064 * -0.118 *** -0.026
r d ,t 0.162 *** 0.202 *** 0.273 *** 0.390 ***
r d ,t- 1 0.041 ** 0.015 -0.011 -0.038 ** -0.040 -0.085 ** -0.048 -0.122
Q20 (AC) 60.6 38.64 60.78 35.21 36.62 28.07 37.12 52.53

Mean (hourly) 0.003 0.248 0.002 0.183 0.019 0.701 0.004 0.487
Median 0.006 0.597 0.004 0.361 0.096 1.120 0.011 0.457
StDev 0.237 2.810 0.135 2.556 0.797 10.22 0.162 8.724
Skewness 14.16 4.661 11.58 7.089 8.880 5.307 6.353 5.905
Kurtosis 254.6 39.42 196.5 89.15 117.3 43.48 57.41 46.17
Q20 (AC) 156.4 1697 247.9 1058 186.8 1151 441.3 1107

Panel B: squared returns

Panel A: returns 

In-sample: Nov 1997 - Aug 2008 Out-of-sample: Sep 2008 - Sep 2011 
Russell S&P 500 Russell S&P 500 

 

 



Table 2. Distribution of realized variance. 

The table summarizes the empirical distribution of daytime realized volatility computed as the sum of 
5-minute squared returns from market open at 9:30am to close at 4:00pm (RV) and three overnight-
adjusted versions that span the entire 24hr period as described in Section 2.2. RV+ON adds the 
unweighted squared overnight return to the baseline realized variance; RVSC is a rescaled version of 
the baseline realized variance using the scaling factor in Eq. (7); RVHL  is Hansen and Lunde’s (2005) 
weight optimized realized variance. Figures are in percentages. 

Summary
statistics RVt RVt

SC RVt
+ON RVt

HL RVt RVt
SC RVt

+ON RVt
HL

Mean 1.091 1.128 1.145 1.14484 3.735 4.003 4.062 4.062
Median 0.658 0.679 0.698 0.69699 1.590 1.704 1.867 1.948
St Dev / Mean 1.257 1.257 1.240 1.240 1.663 1.663 1.598 1.540
Skewness 4.368 4.368 4.253 4.24478 4.208 4.208 4.082 4.012
Kurtosis 34.78 34.78 32.73 32.5309 26.17 26.17 25.14 24.46
d 0.476 0.476 0.484 0.476 0.493 0.493 0.490 0.495

Mean 1.189 1.225 1.225 1.225 3.295 3.359 3.357 3.357
Median 0.736 0.759 0.761 0.761 1.109 1.131 1.132 1.202
St Dev / Mean 1.272 1.272 1.261 1.258 1.939 1.939 1.928 1.865
Skewness 4.584 4.584 4.453 4.353 4.359 4.359 4.371 4.664
Kurtosis 37.35 37.35 35.29 33.56 26.75 26.75 27.00 32.07
d 0.492 0.492 0.493 0.493 0.495 0.495 0.491 0.495

Panel B: S&P 500

Out-of-sample: Sep 2008 - Sep 2011 In-sample: Nov 1997 - Aug 2008

Panel A: Russell 2000

 

 

 



Table 3. Conditional mean, variance and correlation model estimates.  

The table reports parameter estimates and standard errors in parenthesis over the entire sample period. Panel A, top panel, pertains to the overnight  AR and 
TGARCH equations (13a) and (13b), respectively; middle panel to daytime AR and ARFIMA equations (14a) and (14b), respectively; bottom panel to 
correlation equation (15). Panel B corresponds to AR equation (16a) for the close-to-close return and ARFIMA equation (16b) for RVHL. Panel C corresponds 
to the daytime AR and ARFIMA equations (17a) and (17b), respectively. Intercepts are not reported to preserve space. 

Parameters Parameters Parameters

a 1 -0.0031 (0.0021) -0.0074 (0.0018) c 1 0.0466 (0.0206) -0.0428 (0.0183) a 0 -0.0291 (0.0207) -0.0040 (0.0154)
b 1 -0.0659 (0.0144) -0.0692 (0.0140) τ 1 0.3092 (0.0195) 0.3568 (0.0207) a 1 0.0440 (0.0184) -0.0315 (0.0162)
α 1 0.0900 (0.0171) 0.0720 (0.0127) τ 2 -0.8086 (0.0310) -0.9382 (0.0325) b 0 1.0553 (0.0893) 1.6801 (0.1113)
β 1 0.8620 (0.0169) 0.9080 (0.0124) θ -0.5497 (0.0148) -0.5383 (0.0128) τ 0 -0.8061 (0.0247) -0.8067 (0.0228)
γ 1 0.0020 (0.0006) 0.0011 (0.0004) d 0.4934 (0.0087) 0.4966 (0.0046) τ 1 0.2313 (0.0186) 0.3115 (0.0196)

lnξ o -0.0274 (0.0144) -0.0340 (0.0156) σ 2 1.2091 (0.0975) 1.0443 (0.0675) τ 2 -0.6453 (0.0300) -0.8424 (0.0310)
ηo 2.9625 (0.1212) 2.9017 (0.1679) lnξ -0.1042 (0.0268) -0.0806 (0.0233) τ 3 1.0250 (0.0797) 1.7658 (0.1212)

η 21.1876 (7.5066) 8.8438 (1.5029) τ 4 -2.4760 (0.1214) -3.9167 (0.1868)
a 1 0.0425 (0.0189) -0.0407 (0.0167) d 0.4829 (0.0186) 0.4949 (0.0070)
b 1 -0.0988 (0.0917) 0.0790 (0.1081) σ 2 0.9752 (0.0692) 0.9255 (0.0558)
τ 1 0.3059 (0.0194) 0.3576 (0.0207) lnξ d -0.1008 (0.0242) -0.1273 (0.0211)
τ 2 -0.8021 (0.0308) -0.9397 (0.0325) ηd 12.1365 (2.2368) 6.6662 (0.7253)

θ -0.5482 (0.0149) -0.5386 (0.0127)
d 0.4933 (0.0088) 0.4966 (0.0046)
σ 2 1.1431 (0.0736) 1.0666 (0.0620)
lnξ d -0.1310 (0.0240) -0.1138 (0.0196)
ηd 14.1627 (3.0623) 6.5079 (0.7316)

α 0.0146 (0.0105) 0.0049 (0.0085)
β 0.6828 (0.2402) 0.7716 (0.1480)

AR-ARFIMA model (close-to-close )

DCC model (overnight vs. daytime )

AR-TGARCH model (overnight )

AR-ARFIMA model (daytime)

AR-ARFIMA model (daytime )

Panel C: Ex post approach
Russell 2000 S&P 500Russell 2000 S&P 500

Panel A: Bivariate approach Panel B: Bundling approach
Russell 2000 S&P 500

 



Figure 1. Returns and conditional correlation. 

Each figure graphs the conditional TGARCH variance corresponding to the overnight segment of the 
day, the conditional ARFIMA variance corresponding to the daytime segment of the day, and the 
dynamic conditional correlation between the standardized overnight and daytime innovations. The 
sample period runs from November 1997 to September 2011 spanning 3491 days.  
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Figure 2. Dynamic backtesting for correct out-of-sample VaR specification: Russell 2000 index 

The graphs report p-values of the DQ test statistic (24) and the DB probit test statistic (27) for the null hypothesis of correct conditional VaR specification. 
The first (last) point in each graph represents the p-value of the test conducted over a 500-day out-of-sample window starting September 2, 2008 (September 
8, 2009). The bottom horizontal line represents the 0.05 significance level for the tests. The bundling approach graphs pertain to the RVHL measure. 
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Panel B: Dynamic binary (DB) probit test 
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Figure 3. Dynamic backtesting for correct out-of-sample VaR specification: S&P 500 index 

The graphs report p-values of the DQ test statistic (24) and the DB probit test statistic (27) for the null hypothesis of correct conditional VaR specification. 
The first (last) point in each graph represents the p-value of the test conducted over a 500-day out-of-sample window starting September 2, 2008 (September 
8, 2009). The bottom horizontal line represents the 0.05 significance level for the tests. The bundling approach graphs pertain to the RVHL measure. 
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Panel B: Dynamic binary (DB) probit test 
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Figure 4. Empirical conditional coverage probabilities. 

The graphs plot the empirical conditional coverage probability of the VaR obtained as the probit-transformed intercept from the probit regression (26). The 
top and bottom horizontal lines plot the nominal coverage probabilities at 0.05 and 0.01. The bundling approach graphs pertain to the RVHL measure. 
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Panel B: S&P 500 index 
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Table 4. Summary average rejection of correct out-of-sample VaR specification. 

This table summarises the dynamic quantile (DQ) and dynamic binary (DB) probit test for the null of 
correct conditional VaR specification, criterion (22), assessed out-of-sample over J=279 rolling windows 
of 500 days each.  Panel A1 reports the rejection frequency over 279 windows; the first window begins 
September 2, 2008 and the last window begins September 8, 2009. Panel A2 focuses on the first 1/3J 
windows (highly volatile post-Lehman period; last window begins on January 13, 2009) and Panel A3 
focuses on the remaining 2/3J windows. The last three panels report weighted rejection frequencies. Panel 
B weights each rejection according to the distance of the deviation of the empirical conditional coverage 
(CC) probability from the nominal coverage. Panel C1 weights more heavily the rejections for which the 
empirical CC probability is above the nominal coverage (absolute distance) than the rejections for which 
the empirical CC  is below the nominal coverage (squared distance). Panel C2 weights more heavily the 
rejections for which the empirical CC probability is below the nominal coverage (absolute distance) than 
the rejections for which the empirical CC  is above the nominal coverage (squared distance).  Shaded 
areas report the lowest (weighted) average rejection rate across VaR modeling approaches for each test.  

Bivariate RVSC RV+ON RVHL Ex post Bivariate RVSC RV+ON RVHL Ex post

DQ test (5% VaR) 0.222 0.541 0.462 0.462 0.480 0.237 0.620 0.441 0.315 0.032
DQ test (1% VaR) 0.291 1.000 0.749 0.742 0.097 0.251 0.910 0.910 0.305 0.237
Probit test (5% VaR) 0.151 0.581 0.487 0.487 0.741 0.566 0.846 0.541 0.387 0.097
Probit test (1% VaR) 0.068 0.767 0.591 0.577 0.097 0.835 1.000 1.000 0.878 0.194

DQ test (5% VaR) 0.667 1.000 0.968 0.968 0.957 0.301 1.000 0.914 0.548 0.097
DQ test (1% VaR) 0.570 1.000 1.000 1.000 0.269 0.333 1.000 1.000 0.495 0.290
Probit test (5% VaR) 0.452 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.968 0.290
Probit test (1% VaR) 0.204 1.000 1.000 1.000 0.290 0.677 1.000 1.000 1.000 0.312

DQ test (5% VaR) 0.000 0.308 0.205 0.205 0.238 0.200 0.427 0.200 0.195 0.000
DQ test (1% VaR) 0.151 1.000 0.622 0.611 0.011 0.205 0.865 0.865 0.205 0.205
Probit test (5% VaR) 0.000 0.368 0.227 0.227 0.611 0.346 0.768 0.308 0.092 0.000
Probit test (1% VaR) 0.000 0.649 0.384 0.362 0.000 0.914 1.000 1.000 0.816 0.135

DQ test (5% VaR) 0.191 0.807 0.798 0.803 0.514 0.381 0.794 0.725 0.529 0.047
DQ test (1% VaR) 0.242 1.000 0.932 0.927 0.054 0.171 0.883 0.883 0.432 0.281
Probit test (5% VaR) 0.085 0.832 0.801 0.807 0.750 0.726 0.972 0.787 0.628 0.113
Probit test (1% VaR) 0.021 0.954 0.863 0.855 0.048 0.813 1.000 1.000 0.941 0.236

DQ test (5% VaR) 0.050 0.804 0.905 0.902 0.514 0.329 0.785 0.777 0.457 0.280
DQ test (1% VaR) 0.243 1.000 0.955 0.948 0.054 0.143 0.882 0.881 0.375 0.924
Probit test (5% VaR) 0.045 0.836 0.921 0.919 0.750 0.939 0.986 0.865 0.705 0.672
Probit test (1% VaR) 0.021 0.957 0.884 0.873 0.048 0.807 1.000 1.000 0.932 0.919

DQ test (5% VaR) 0.318 0.839 0.615 0.630 0.567 0.447 0.841 0.627 0.757 0.001
DQ test (1% VaR) 0.184 1.000 0.568 0.580 0.019 0.749 0.000 0.934 0.765 0.174
Probit test (5% VaR) 0.120 0.834 0.593 0.607 0.775 0.482 0.916 0.633 0.411 0.002
Probit test (1% VaR) 0.003 0.897 0.551 0.568 0.016 0.949 1.000 1.000 0.997 0.122

Panel C2: Weighted Asymmetrically  Overprediction > Underprediction

Russell 2000

Panel B: Weighted by Absolute Coverage Error 

Panel C1: Weighted Asymmetrically Underprediction > Overprediction

S&P 500
Panel A1: Equally-weighted J  backtesting windows (J =279)

Panel A2: Equally-weighted 1/3J  backtesting windows 

Panel A3: Equally-weighted 2/3J  backtesting windows 

 


