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1. Introduction

Conditional Value-at-Risk and, as its natural extension, spectral risk measures have become
popular risk management tools in the last decade. Originally, these risk measures have been
introduced as an alternative to heavily criticized Value-at-Risk (e.g., Artzner et al. (1999),
Szegö (2002)) for the assessment of solvency capital in bank regulation. In the recent literature,
the context in which spectral risk measures are used has changed, away from the assessment of
solvency capital (“risk” context) towards the use as part of an investor’s objective function in
portfolio selection (“decision” context). We argue that the latter is a misuse, as the regulatory
concept of diversification underlying spectral risk measures is suitable for the assessment of
solvency capital, but is misleading when applied to portfolio selection.

In the original context of “risk” in bank regulation, the regulatory requirements add to a
bank’s objective (or utility) function as a constraint:

max
X∈X

π(X), s.t. ρ(X) ≤ ρ̄. (1)

The bank’s utility function π is only allowed to be applied to those alternatives X out of its set
of alternatives X , whose solvency capital requirements ρ(X) do not exceed its given solvency
capital ρ̄. In the Basel II and III frameworks, ρ corresponds to Value-at-Risk. As a theoretically
more adequate alternative, spectral risk measures such as Conditional Value-at-Risk have been
introduced to overcome the paradoxical results that obtain under Value-at-Risk. Especially, their
definition is based on an axiomatic framework that consistently reflects these regulatory issues,
and most notably the regulatory concept of subadditivity and diversification.

In the recent literature, spectral risk measures, ρφ, are also used in the context of “decision”
as, e.g., in problems of portfolio selection. Here, they constitute the risk part within an investor’s
(µ, ρφ)-preferences, which are represented by a (µ, ρφ)-utility function, π = π(µ, ρφ). In a first
step, (µ, ρφ)-efficient frontiers are derived in this literature by minimizing a spectral risk measure
for any given level of expected return, µ̄:

min
X∈X

ρφ(X), s.t. E(X) = µ̄ (2)

(e.g., Adam et al. (2008), Bassett et al. (2004), Benati (2003), Bertsimas et al. (2004),
De Giorgi (2002), Krokhmal et al. (2002), Rockafellar/Uryasev (2000)).

Afterwards, the same model (2) is also used to find optimal portfolios by fixing a certain level
of expected return µ̄, and finding the corresponding portfolio on the (µ, ρφ)-efficient frontier.1

Many applications in practice are based on such a limited analysis. For example, it might be that
the tradeoff between reward and risk is made by, say, a higher management hierarchy by fixing
µ̄, while the risk analyst should only assess the risk side. Conversely, the same is true when
1Note that approach (2) fundamentally differs from the regulatory approach given by (1). There, the regulatory
constraint is not used to find optimal portfolios, but only restricts the set of alternatives X to the so-called
acceptance set A = {X ∈ X|ρ(X) ≤ ρ̄}, i.e., (1) can be equivalently written as max {π(X)|X ∈ A} (e.g.,
Artzner et al. (1999)). Especially, in the regulatory framework no assumption is made about the utility
function π. By contrast, the portfolio selection approach (2), at least implicitly, is focused on modeling this
utility function π, as the problem of finding an optimal portfolio is given by max {π(µ(X), ρφ(X))|X ∈ X}.
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imposing a fixed risk limit ρ̄ that banks are allowed to take, and maximizing expected return. In
both cases, however, the limits are exogenously determined, so that the tradeoff between reward
and risk is not subject to considerations within the choice of optimal portfolios.

In order to disclose the shortcomings of spectral risk measures in portfolio selection, we need
to explicitly consider this tradoff between reward and risk made by the higher hierarchy instead
of restricting to a limited analysis only. We do so by applying a tradeoff analysis, which explicitly
models an investor’s (µ, ρφ)-preferences in the form of a (µ, ρφ)-utility function, π = π(µ, ρφ).
Finding an optimal portfolio then requires to apply the indifference curves induced by this utility
function to the (µ, ρφ)-efficient frontier. To this end, we assume the spectral utility function

πφ(X) = (1− λ) · E(X)− λ · ρφ(X), λ ∈ [0, 1], (3)

which naturally arises from two different perspectives. From a decision theoretic perspective, the
two components −E(X) and ρφ(X) satisfy the properties of spectral risk measures, and by forming
a (negative) convex combination, the spectral utility function πφ itself satisfies these properties
as well. Therefore, the determination of the (µ, ρφ)-efficient frontiers and the consequent choice
of optimal portfolios using a spectral utility function πφ are based on one consistent axiomatic,
and thus integrated, framework. For this reason, spectral utility functions are widely used to
model a reward-risk tradeoff in the recent literature on insurance and production theory (see,
e.g., Cai/Tan (2007) and Wagner (2010) in insurance theory, and Jammernegg/Kischka
(2007) and Ahmed et al. (2007) in production theory.) From an optimization perspective, the
spectral utility function (3) is the tradeoff version of the (µ, ρφ)-efficient frontier program (2),
and thus also establishes an integrated framework.
As will be shown below, the limited analysis and the tradeoff analysis are equivalent ap-

proaches for finding optimal portfolios in the traditional mean-variance framework, but they are
fundamentally different under spectral risk measures. As a consequence, the prevalent limited
analysis is not covered by the more general tradeoff analysis, and identifies non-optimal portfolios.
Some recent results on optimal portfolio selection under spectral risk measures thus have to be
re-considered.

This paper is focused on those shortcomings caused by the change from “risk” to “decision”,
and, to our best knowledge, is the first to analyze (µ, ρφ)-efficient frontiers together with optimal
portfolios within an integrated framework. Our contribution is twofold: (i) The theoretical
literature on portfolio selection under spectral risk measures so far relies on the assumption
of normally distributed returns. We propose a finite state space approach instead, which does
not impose any particular initial distribution and allows to disclose fundamental differences
between the efficient frontiers under the variance and spectral risk measures, respectively. (ii)
The literature so far has been restricted to the determination of (µ, ρφ)-efficient frontiers, but
does not adequately cover the choice of optimal portfolios. We address this issue by applying a
spectral utility function as in (3), to build an integrated portfolio selection approach.

Within this integrated framework, spectral risk measures tend towards corner solutions. If a risk
free asset exists, either the exclusive investment in the risk free asset or in the tangency portfolio
instead of diversification is optimal. Similarly, without a risk free asset, diversification proves
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to be limited under spectral risk measures. Within the traditional mean-variance framework,
however, Markowitz (1952) noted that “diversification is both observed and sensible; a rule
of behavior which does not imply the superiority of diversification must be rejected both as a
hypothesis and as a maxim” (p. 77). Following this prominent view, spectral risk measures
appear inappropriate in the context of “decision” and portfolio selection. The reason is that they
are based on a regulatory concept of diversification that differs fundamentally from diversification
in the mean-variance framework. As will be shown below, diversification there is based on the
tradeoff between reward and risk, whereas under spectral risk measures the dependence structure
between the assets is relevant.

The paper proceeds as follows. Section 2 reviews the axiomatic framework and characterizes
the regulatory concept of diversification underlying spectral risk measures. Section 3 derives the
(µ, ρφ)-efficient frontiers. Section 4 analyzes the choice of optimal portfolios by using spectral
utility functions. In both Sections 3 and 4, we confront these results with those from the
traditional (µ, σ2)-framework, which serves as a well-established benchmark. Section 5 discusses
the economic implications of the findings. Section 6 concludes.

2. Theoretical framework

2.1. Spectral risk measures and the regulatory concept of diversification

In order to prepare for the regulatory concept of diversification underlying spectral risk measures
(“risk” context), we first introduce the notion of comonotonicity (e.g., Dhaene et al. (2002)).

Definition 2.1. Two random variables X1, X2 ∈ X are called comonotonic if

(X1(ωi)−X1(ωj)) · (X2(ωi)−X2(ωj)) ≥ 0, for all ωi, ωj ∈ Ω, P (Ω) = 1. (4)

Two random variables are comonotonic if they increase and decrease simultaneously in
their state-dependent realizations. Comonotonicity thus denotes perfect dependence between
the random variables, and generalizes the concept of perfect positive correlation. We have
corr(X1, X2) = 1 if and only if X2 = a ·X1 + b, a > 0, b ∈ R. Perfect positive correlation implies
comonotonicity, but the converse is not true. For example, while comonotonicity holds between
a random variable and a constant, their correlation coefficient is zero. This will prove to be
relevant for diversification between a risk free and a risky asset under the variance, whereas
diversification does not pay under spectral risk measures.
We proceed with the definition of spectral risk measures (Acerbi (2002), Acerbi (2004)).2

Definition 2.2. A mapping ρφ : X → R is called spectral risk measure if it satisfies

– Monotonicity with respect to first order stochastic dominance: For X1, X2 ∈ X with FX1(t) ≥
FX2(t) and t ∈ R, ρφ(X1) ≥ ρφ(X2).

2The given properties differ slightly from those by Acerbi (2004) in that they do not explicitly consider law
invariance and positive homogeneity. Law invariance is implied by monotonicity with respect to first order
stochastic dominance (Song/Yan (2009), Section 5.1). Further, monotonicity and comonotonic additivity
imply positive homogeneity, ρφ(λ ·X) = λ · ρφ(X), λ ≥ 0, (Schmeidler (1986), remark 1).
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– Translation invariance: For X ∈ X and c ∈ R, ρφ(X + c) = ρφ(X)− c.

– Subadditivity: For X1, X2 ∈ X , ρφ(X1 +X2) ≤ ρφ(X1) + ρφ(X2).

– Comonotonic Additivity: For comonotonic X1, X2 ∈ X , ρφ(X1 +X2) = ρφ(X1) + ρφ(X2).

As to the above properties, spectral risk measures originally have been introduced for the
assessment of solvency capital in bank regulation (“risk”). Monotonicity and translation invariance
are straightforward requirements for measuring risk in monetary terms. Monotonicity states that
a financial position X1 with a larger probability of falling below a threshold t for all t ∈ R than a
financial position X2 requires more solvency capital. Since ρφ(X + ρφ(X)) = ρφ(X)− ρφ(X) = 0,
translation invariance allows for the interpretation of ρφ(X) as required solvency capital.

The regulatory concept of diversification underlying spectral risk measures is captured jointly
by the properties of subadditivity and comonotonic additivity, and relates exclusively to the
dependence structure between financial positions. Subadditivity ensures that spectral risk
measures reward diversification, as a portfolio of two financial positions does not require more
solvency capital than the two single positions do. The diversification benefit results from an
imperfect dependence structure between the financial positions X1 and X2 within a portfolio. In
this case, a “high” realization in one state of the world of position X1 (partially) compensates for
a “low” realization of position X2 in the same state of the world (and vice versa). For the special
case that the two financial positions are comonotonic and “high” and “low” realizations coincide
in all states of the world, such a compensational effect does not exist. Consequently, that kind
of “diversification” should not be rewarded by reduced solvency capital requirements. This is
captured by the additivity of spectral risk measures for comonotonic financial positions. We
summarize the above argument in the following proposition (see also Cherny (2006), Theorem
5.1).

Proposition 2.3. Let ρφ be a spectral risk measure and X1, X2 ∈ X . Non-comonotonicity
between X1 and X2 is a necessary condition for a positive diversification benefit, λ · ρφ(X1) +
(1− λ) · ρφ(X2)− ρφ(λ ·X1 + (1− λ) ·X2) > 0, λ ∈ [0, 1].

The following stylized example illustrates the regulatory concept of diversification underlying
spectral risk measures.

Example 2.4. Let X0 = x0 be a risk free asset and X1, X2 and X3 be risky assets with
state-dependent returns

X1 =


−2 P (ω1) = 1/3

0 P (ω2) = 1/3
3 P (ω3) = 1/3

, X2 =


−3 P (ω1) = 1/3

1 P (ω2) = 1/3
4 P (ω3) = 1/3

, X3 =


4 P (ω1) = 1/3
1 P (ω2) = 1/3
−3 P (ω3) = 1/3

.

For the non-comonotonic assets X1 and X3 we observe a positive diversification benefit from
the dependence structure: While the single positions suffer losses in state ω1 and ω3, respectively,
the portfolios γ ·X1 + (1 − γ) ·X3 for γ ∈ [0.5; 0.67] have only non-negative state-dependent
returns. Consequently, subadditivity ensures that building a portfolio yields reduced solvency
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capital requirements in this case:

ρφ(γ ·X1 + (1− γ) ·X3) < γ · ρφ(X1) + (1− γ) · ρφ(X3), γ ∈ (0, 1).

For the comonotonic assets X1 and X2, a diversification benefit from the dependence structure
does not prevail: The state-dependent returns simply add up without providing any compensa-
tional effect. Hence, comonotonic additivity implies that building a portfolio does not allow to
reduce solvency capital requirements in this case:

ρφ(γ ·X1 + (1− γ) ·X2) = γ · ρφ(X1) + (1− γ) · ρφ(X2), γ ∈ [0, 1].

As another example, building a portfolio of a risky asset Xi, i = 1, . . . , 3 and the risk free asset
X0 yields

ρφ(β ·Xi + (1− β) ·X0) = β · ρφ(Xi)− (1− β) ·X0, β ∈ [0, 1].

In this case, the solvency capital requirements decrease linearly in the proportion (1−β). Beyond,
there is no (additional) diversification benefit from the dependence structure. This result is not
only driven by the comonotonicity between Xi and X0, but is also required by the property of
translation invariance. Adding a certain amount of cash (1− β) ·X0 to a risky asset decreases
the solvency capital requirements of the portfolio by exactly this amount. �

We proceed with the representation of spectral risk measures as weighted sum of quantiles.

Proposition 2.5. Any spectral risk measure ρφ of a random variable X is of the form

ρφ(X) = −
1∫

0

F ∗X(p) · φ(p)dp, (5)

where F ∗X(p) = sup{x ∈ R|FX(x) < p}, p ∈ (0, 1] are the p-quantiles of the cumulative distribution
function FX , and the risk spectrum φ : [0, 1]→ R satisfies

– positivity: φ(p) ≥ 0 for all p ∈ [0, 1],

– normalization:
∫ 1

0 φ(p)dp = 1,

– monotonicity: φ(p1) ≥ φ(p2) for all 0 ≤ p1 ≤ p2 ≤ 1.

For the proof see Acerbi (2002), Theorem 4.1. Spectral risk measures are characterized by
a risk spectrum φ, which assigns different weights to the p-quantiles, with smaller quantiles
receiving greater weights to ensure the subadditivity property. Further properties of spectral risk
measures are given by Dhaene et al. (2006).

Currently, the most widely discussed spectral risk measure is Conditional Value-at-Risk (e.g.,
Acerbi/Tasche (2002b), Rockafellar/Uryasev (2002)). Its risk spectrum is given by

φ(p) =
{
α−1 for 0 < p ≤ α
0 for α < p ≤ 1

. (6)
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Conversely, spectral risk measures can be seen as a natural extension of Conditional Value-at-Risk,
as any convex combination of Conditional Value-at-Risks yields a spectral risk measure (Acerbi
(2002), Proposition 2.2).

Also, the (negative) mean ρφ(X) = −E(X) is a spectral risk measure with φ(p) = 1, p ∈ [0, 1].
By contrast, the variance of a financial position X, V ar(X) = σ2, is not a spectral risk measure,
as it satisfies none of the required properties.

2.2. Portfolio selection problems

We now change the context from “risk” to “decision” and introduce some simple portfolio selection
problems, in which spectral risk measures will be applied: An investor can split their initial
wealth W0 between different assets. The return from this investment (i.e., the final wealth) is
given by a random variable X ∈ X that stems from one of the following settings:

– Setting 1: There are two risky assets X1 and X2, i.e., X = {γ ·X1 + (1 − γ) ·X2|γ ∈ R}.3

We assume the risky assets to be (µ, ρ)-efficient4, i.e., E(X1) < E(X2) ∧ ρ(X1) < ρ(X2).

– Setting 2: There are two risky assets X1 and X2, and a risk free asset X0, i.e., X =
{β · (γ ·X1 + (1− γ) ·X2) + (1− β) ·X0|β ≥ 0, γ ∈ R}. Again, we assume the risky assets to
be (µ, ρ)-efficient. Moreover, we restrict the correlation coefficient to corr(X1, X2) ∈ (−1, 1)
to ensure that one cannot construct an additional risk free asset from the risky assets. Further
assumptions about the return of the risk free asset are made in the relevant sections.

The determination of a portfolio’s risk hinges crucially on the dependence structure between
the risky assets. While a portfolio’s variance can be calculated directly from its basic assets’
variances and the correlation coefficient, the rank dependency of spectral risk measures requires
the complete dependence structure to determine a portfolio’s spectral risk. The theoretical
literature thus mostly relies on the assumption of normally distributed returns, as in this case the
correlation coefficient captures the dependence structure completely (e.g., Alexander/Baptista
(2002), Alexander/Baptista (2004), De Giorgi (2002), Deng et al. (2009)). We refrain
from this assumption, and apply a state space approach instead, which characterizes the assets
X : Ω→ R via their state-dependent realizations X = (X(ω1), . . . , X(ωn))′ = (x1, . . . , xn)′ and
the corresponding vector of the probabilities of the states of the world P = (P (ω1), . . . , P (ωn))′ =
(p1, . . . , pn)′, i.e., any alternative is given by the pair (X,P ). This approach captures the
dependence structure completely by the vectors X, and both the variance and spectral risk
measures can be calculated directly from (X,P ). For the ease of demonstration, the analysis
remains mostly restricted to a finite state space, as certain portfolio structures “get lost” in the
case of infinitely many states. However, we also refer to the case of normally distributed returns.
To our best knowledge, this paper is the first to apply the state space approach to portfolio

selection problems under spectral risk measures. Unlike the previous literature, our derivation
only relies on the properties of the risk measures, and does not require any assumption on the
underlying random variable X. Our approach thus is more general and, as yet, proves to be
3X1 := W0 · (1 +R1) and X2 := W0 · (1 +R2) denote the returns from investing the initial wealth W0 in assets 1
and 2.

4We use ρ as a placeholder for the variance σ2 and spectral risk measures ρφ. The term “(µ, ρ)-efficient”, for
example, stands for (µ, σ2)- and (µ, ρφ)-efficient.
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advantageous in that it allows to disclose restrictive portfolio structures that have not become
explicit elsewhere.
For the ease of demonstration, we first restrict the analysis to m = 2 risky assets; we later

show that the results hold for more general cases as well.

The (µ, ρ)-boundary and the (µ, ρ)-efficient frontier are defined as follows.

Definition 2.6. A portfolio X ∈ X belongs to the (µ, ρ)-boundary if for some expected return
µ̄ ∈ R it has minimum risk ρ.

Definition 2.7. A portfolio X ∈ X belongs to the (µ, ρ)-efficient frontier if there is no portfolio
X̄ ∈ X with E(X̄) ≥ E(X) and ρ(X̄) ≤ ρ(X), where at least one of the inequalities is strict.

We use the subscript i = 1, 2 to indicate that the (µ, ρ)i-boundaries and the (µ, ρ)i-efficient
frontiers refer to Setting 1 and 2, respectively. As is common in portfolio selection, we illustrate
the (µ, ρ)i-efficient frontiers in the respective (ρ, µ)-planes.5 Extending the previous literature,
we are not only interested in the (µ, ρ)-efficient frontiers themselves, but especially in their (e.g.,
(piecewise) linear or (strictly) concave) shape.

3. (µ, σ2)-efficient frontiers versus (µ, ρφ)-efficient frontiers

3.1. Comonotonic subsets of alternatives

As spectral risk measures are comonotonic additive, comonotonic subsets of alternatives become
an essential part of the analysis. The state space approach allows to make the comonotonic
subsets of alternatives explicit via their state-dependent realizations. Let

X =

Xγ = γ ·X1 + (1− γ) ·X2 =


γ · x11 + (1− γ) · x21

...
γ · x1n + (1− γ) · x2n


∣∣∣∣∣∣∣∣∣ γ ∈ R

 (7)

be the set of alternatives based on the two risky assets. The boundaries of the comonotonic
subsets of alternatives are given by

γij :=
x2i − x2j

(x2i − x2j )− (x1i − x1j )
, i = 1, . . . , n− 1, j = 2, . . . , n, i < j. (8)

We obtain the proportions (8) by equalizing any two portfolio realizations and solving for γ.
Therefore, any γij denotes a portfolio where there is a switch in the ranking of the realizations.
Rearranging the proportions with respect to size yields the following k + 1 comonotonic subsets
of alternatives:

{Xγ |γ ∈ (−∞, γij,1:k]} , {Xγ |γ ∈ (γij,1:k, γij,2:k]} , . . . , {Xγ |γ ∈ (γij,k:k,∞)} . (9)
5Unlike the previous literature, for the variance we use the (σ2, µ)-plane instead of the more standard (σ, µ)-plane.
The reason is that for a more straightforward comparison of the choice of optimal portfolios in Section 4 we
want both the induced indifference curves of the mean-variance utility function, π(X) = E(X)− λ

2 · V ar(X),
and spectral utility functions, πφ(X) = (1− λ) · E(X)− λ · ρφ(X), to be linear. This in turn requires having
the variance instead of the standard deviation on the abscissa. None of the results on the choice of optimal
portfolios would change if we were to use the (σ, µ)-plane instead.
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The number of comonotonic subsets depends mainly on the number of states of the world. For
n→∞, k may (but does not necessarily need to) tend to infinity.

In the case of one risk free and one risky asset, the complete set of alternatives

X = {Xβ = β ·Xγ̄ + (1− β) ·X0|β ≥ 0} (10)

is comonotonic.

3.2. Two risky assets

We start portfolio selection with analyzing the (µ, ρ)-boundaries and the (µ, ρ)-efficient frontiers.
As we restrict the analysis to two risky assets, the complete set of alternatives Xγ = γ ·X1 +
(1− γ) ·X2, γ ∈ R belongs to the (µ, ρ)1-boundaries.

First, we briefly recall the traditional (µ, σ2)-framework. The (µ, σ2)1-boundary is obtained
by solving the portfolio’s expected return for the proportion γ and plugging it into its variance:

V ar(Xγ) =
(
E(Xγ)− E(X2)
E(X1)− E(X2)

)2
· a+ 2 · E(Xγ)− E(X2)

E(X1)− E(X2) · b+ c, (11)

a = V ar(X1) + V ar(X2)− 2 ·
√
V ar(X1) ·

√
V ar(X2) · corr(X1, X2),

b =
√
V ar(X1) ·

√
V ar(X2) · corr(X1, X2)− V ar(X2),

c = V ar(X2).

The (µ, σ2)1-boundary is a parabola that opens to the right (see Figure 1). The (µ, σ2)1-efficient
frontier lies on the upper branch of the parabola starting from the minimum-variance portfolio
(MVP).

Proposition 3.1. Let X be as in Setting 1. Then

1. the minimum-variance portfolio is given by γMV P = − b
a ;

2. the (µ, σ2)1-efficient frontier contains all portfolios γ ∈ (−∞, γMV P ] and is a strictly concave
curve for any correlation coefficient corr(X1, X2) ∈ [−1, 1].

The proof is straightforward and therefore omitted. Essentially, the strict concavity of the
(µ, σ2)1-efficient frontier follows from the strict convexity of the variance on X for any correlation
coefficient corr(X1, X2) ∈ [−1, 1].

We now consider (µ, ρφ)-preferences. The (µ, ρφ)1-boundary is obtained by writing the portfo-
lio’s expected return as a function of its spectral risk.

As a first step, we analyze a comonotonic subset of alternatives Xγ , γ ∈ [γd, γu] as given in (9).
For any δ := γ−γd

γu−γd ∈ [0, 1], the spectral risk of portfolio Xγ

ρφ(Xγ) = ρφ(δ ·Xγd + (1− δ) ·Xγu) = δ · ρφ(Xγd) + (1− δ) · ρφ(Xγu) (12)
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can be solved for

δ = ρφ(Xγ)− ρφ(Xγu)
ρφ(Xγd)− ρφ(Xγu) (13)

and inserted into the portfolio’s expected return to give the linear risk-return schedule

E(Xγ) = δ · E(Xγd) + (1− δ) · E(Xγu)

= E(Xγd)− E(Xγu)
ρφ(Xγd)− ρφ(Xγu) · ρφ(Xγ)− E(Xγd)− E(Xγu)

ρφ(Xγd)− ρφ(Xγu) · ρφ(Xγu) + E(Xγu). (14)

If the comonotonic subset of alternatives is (µ, ρφ)-efficient, i.e., E(Xγd) ≤ E(Xγu) ∧ ρφ(Xγd) ≤
ρφ(Xγu), (14) is linearly increasing, and linearly decreasing otherwise.
Regarding the complete set of alternatives Xγ , γ ∈ R, the portfolio’s spectral risk is convex

on X due to subadditivity and positive homogeneity. As the portfolio’s expected return E(Xγ)
and the proportion γ are linearly related, the portfolio’s spectral risk is also a convex function
of its expected return that, according to (14), is piecewise linear for comonotonic subsets of
alternatives. The (µ, ρφ)1-boundary thus is a piecewise linear and overall convex curve that
opens to the right (see Figure 1). The (µ, ρφ)1-efficient frontier lies on the upper branch of the
(µ, ρφ)1-boundary starting from the minimum-spectral risk portfolio (MSP); its existence and the
non-emptiness of the (µ, ρφ)1-efficient frontier is guaranteed by the assumption of (µ, ρφ)-efficient
basic assets. We summarize the results in the following proposition.

Proposition 3.2. Let X be as in Setting 1. Then

1. the minimum-spectral risk portfolio γMSP lies in the set {γij,1:k, . . . , γij,k:k};

2. the (µ, ρφ)1-efficient frontier contains all portfolios γ ∈ (−∞, γMSP ] and is a concave curve
that is piecewise linear for comonotonic subsets of alternatives as given in (9).

We give the following stylized example for numerical illustration.

Example 3.3. An investor can split their initial wealth between two risky assets with state-
dependent returns

X1 =


1 P (ω1) = 1/3
2 P (ω2) = 1/3
3 P (ω3) = 1/3

and X2 =


4 P (ω1) = 1/3
0 P (ω2) = 1/3
3 P (ω3) = 1/3

.

As risk measures, the investor applies the variance and Conditional Value-at-Risk at the confidence
level α = 0.5. The risky assets are (µ, σ2)-efficient, as E(X1) = 2 < 2.34 = E(X2), V ar(X1) =
0.67 < 2.89 = V ar(X2), and they are (µ,CV aRα)-efficient, as CV aRα(X1) = −1.34 < −1 =
CV aRα(X2) holds.
Figure 1 shows the (µ, σ2)1-boundary. The minimum-variance portfolio is given by X0.76 =

(1.53; 1.71; 3)′, and the (µ, σ2)1-efficient frontier contains all portfolios Xγ , γ ∈ (−∞; 0.76].
Further, Figure 1 shows the (µ,CV aRα)1-boundary. The (µ,CV aRα)1-efficient frontier con-

tains all portfolios Xγ , γ ∈ (−∞; 0.8], with X0.8 = (1.6; 1.6; 3) as the minimum-Conditional Value-
at-Risk portfolio. The linear segments correspond to the portfolios γ ∈ (−∞; 0.34] (x2 ≤ x3 ≤ x1),
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γ ∈ (0.34; 0.8] (x2 ≤ x1 ≤ x3), γ ∈ (0.8; 1.5] (x1 ≤ x2 ≤ x3), and γ ∈ (1.5;∞] (x1 ≤ x3 ≤ x2).
The corner positions X0.34 = (3; 0.67; 3)′, X0.8 = (1.6; 1.6; 3)′, and X1.5 = (−0.5; 3; 3)′ are
characterized by having at least two identical state-dependent realizations. �

3.3. One risk free and two risky assets

We continue portfolio selection by introducing a risk free asset. For (µ, σ2)-preferences, we stay
in line with the literature and assume that X0 < E(XMV P ) to ensure that the risk free asset lies
below the intersection of the asymptote of the (µ, σ2)1-efficient frontier with the ordinate. In the
(µ, ρφ)-framework, the risk free asset satisfies X0 = E(X0) = −ρφ(X0) and lies on the bisector of
the second quadrant. Therefore, we assume that −ρφ(XMSP ) < X0 < E(XMSP ) (see Figure 2).

As the first step, the (µ, ρ)2-efficient frontiers for one risk free asset X0 and only one risky asset
Xγ̄ are analyzed, i.e., the set of alternatives is Xβ,γ̄ = β ·Xγ̄ + (1− β) ·X0, β ≥ 0. Afterwards,
we interpret the risky asset Xγ̄ as a (µ, ρ)1-efficient portfolio that is composed of the risky basic
assets.

Again, we briefly recall the traditional (µ, σ2)-framework. The derivation of the (µ, σ2)2-
efficient frontier with respect to the set of alternatives Xβ,γ̄ , β ≥ 0 requires solving the portfolio’s
variance for the proportion β and plugging it into its expected return, which gives the well-known
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strictly concave (square root) function

E(Xβ,γ̄) = E(Xγ̄)−X0√
V ar(Xγ̄)

·
√
V ar(Xβ,γ̄) +X0. (15)

Generally, any (µ, σ2)1-efficient portfolio can serve as a risky asset Xγ̄ in the above consider-
ations. (µ, σ2)2-efficient mean-variance combinations consist of the risk free asset X0 and the
(µ, σ2)1-efficient portfolio XT,σ2 that touches the parabola (11) at only one point, and thus is
called tangency portfolio (see Figure 3).

Proposition 3.4. Let X be as in Setting 2 and X0 < E(XMV P ). Then

1. the (µ, σ2)2-efficient frontier is a strictly concave curve through the risk free asset and the
tangency portfolio;

2. the tangency portfolio is given by

γT,σ2 = (E(X2)−X0) · b− (E(X1)− E(X2)) · c
(E(X1)− E(X2)) · b− (E(X2)−X0) · a. (16)

The proof is straightforward and therefore omitted. Proposition 3.4 provides the well-known
Tobin separation (Tobin (1958)): Any (µ, σ2)2-efficient portfolio is a linear combination of
the risk free asset and the tangency portfolio. An investor’s individual risk aversion only
affects the proportions of the initial wealth that are invested in these assets. Note that for any
given parameters E(X1), E(X2), V ar(X1), V ar(X2), and corr(X1, X2) ∈ (−1, 1), there exists a
corresponding value X0, so that any (µ, σ2)1-efficient portfolio can serve as the tangency portfolio,
i.e., γT,σ2 ∈ (−∞, γMV P ).

A similar argument applies to the (µ, ρφ)2-efficient frontier. As the set of alternativesXβ,γ̄ , β ≥ 0
is comonotonic and spectral risk measures are comonotonic additive and translation invariant,
we can solve the portfolio’s spectral risk for the proportion β as

ρφ(Xβ,γ̄) = ρφ(β ·Xγ̄ + (1− β) ·X0) = β · ρφ(Xγ̄) + (1− β) · ρφ(X0)

⇒ β = ρφ(Xβ,γ̄)− ρφ(X0)
ρφ(Xγ̄)− ρφ(X0) (17)

and substitute β into its expected return:

E(Xβ,γ̄) = β · E(Xγ̄) + (1− β) ·X0

= E(Xγ̄)−X0
ρφ(Xγ̄)− ρφ(X0) · ρφ(Xβ,γ̄)− E(Xγ̄)−X0

ρφ(Xγ̄)− ρφ(X0) · ρφ(X0) +X0. (18)

The portfolio’s expected return is linearly increasing in its spectral risk.
Again, any (µ, ρφ)1-efficient portfolio Xγ̄ can serve as the risky asset. However, the only

(µ, ρφ)2-efficient combination consists of the risk free asset X0 and the (µ, ρφ)1-efficient portfolio,
XT,ρφ , where (18) is a tangent to the (µ, ρφ)1-efficient frontier (tangency portfolio) (see Figure
3); Tobin separation still holds. Note that this result crucially depends on the assumption of

11



0.5 1.0 1.5 2.0 2.5 3.0

1.9

2.0

2.1

2.2

2.3

σ2

µ

X2

X1

X0

XT

−1.1−1.3−1.5−1.7−1.9

1.9

2.0

2.1

2.2

2.3

CV aRα

µ

X2

X1

XT

X0

Figure 3: (µ, σ2)2- versus (µ,CV aRα)2-boundary with a risk free and two risky assets

(µ, ρφ)-efficient risky basic assets; without this assumption, the (µ, ρφ)1-efficient frontier might
be empty and Tobin separation does not hold. The results are summarized in the following
proposition.

Proposition 3.5. Let X as in Setting 2 and −ρφ(XMSP ) < X0 < E(XMSP ). Then

1. the (µ, ρφ)2-efficient frontier is a straight line through the risk free asset and the tangency
portfolio;

2. the tangency portfolio γT,ρφ lies in the set {γij,1:k, . . . , γij,k:k}.

We continue the stylized Example 3.3 by adding a risk free asset.

Example 3.6. Let X0 = 1.9 be the return of the risk free asset, which is added to the risky
assets X1 and X2.
Figure 3 shows the (µ, σ2)2-efficient frontier, which is a strictly concave curve through X0

and XT,σ2 . The tangency portfolio γT,σ2 = 0.57 is characterized by the state-dependent returns
XT = (2.28; 1.15; 3)′.
Further, Figure 3 shows the (µ,CV aRα)2-efficient frontier as a straight line through X0 and

XT,CV aRα . The tangency portfolio γT,CV aRα = 0.8 with XT,CV aRα = (1.6; 1.6; 3)′ is characterized
by having at least two identical state-dependent realizations. �

3.4. Extensions

In order to keep the analysis simple, so far we have imposed two assumptions: (i) m = 2 risky
assets, and (ii) (µ, ρ)-efficiency of these risky basic assets. We now show that relaxing the
assumptions does not change the shape of the (µ, ρ)-efficient frontiers.

For the (µ, σ2)-framework, it is well-known that the strict concavity of the (µ, σ2)-efficient
frontiers as well as Tobin separation hold in the absence of the above restrictions; (see the
Appendix A for another proof).

In order to proceed with the (µ, ρφ)-framework, we start by omitting the (µ, ρφ)-efficiency of
the risky basic assets, but still restrict their number to m = 2. The efficiency assumption ensures
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that the minimum-spectral risk portfolio exists and the (µ, ρφ)1-efficient frontier is non-empty.
The following stylized counter-example shows that this result no longer holds when relaxing the
assumption.

Example 3.7. Let the risky assets be given as in Example 3.3. As spectral risk measures,
the investor applies Conditional Value-at-Risk at the confidence level α1 = 0.8 and α2 = 0.9.
In both cases, the asset X1 is not (µ,CV aRα)-efficient; we have E(X1) = 2 < 2.34 = E(X2)
and CV aR0.8(X1) = −1.75 > −1.92 = CV aR0.8(X2) and CV aR0.9(X1) = −1.89 > −2.15 =
CV aR0.9(X2), respectively.
For α1 = 0.8, the minimum-spectral risk portfolio is given by X0.34 = (3; 0.67, 3), and the

(µ,CV aRα1)1-efficient frontier contains all portfolios γ ∈ (−∞; 0.34]. For α2 = 0.9, the minimum-
spectral risk portfolio does not exist. Instead, the (µ,CV aRα2)1-boundary is strictly decreasing.
Figure 4 shows the corresponding (µ,CV aRα)1-boundaries. �

Note that the non-existence of the minimum-spectral risk portfolio is closely related to the
property of translation invariance; due to

ρφ(X) = ρφ(X + E(X)− E(X)) = −E(X) + ρφ(X − E(X)), (19)

two separate effects can be identified when moving upward along the (µ, ρφ)1-boundary. The
first effect is captured by −E(X) < 0 (mean effect), and leads to a decrease in spectral risk. The
second effect (deviation effect) refers to ρφ(X −E(X)) > 0, and has been introduced as deviation
measure by Rockafellar et al. (2006). The deviation effect leads to an increase in spectral
risk. Depending on whether the mean effect outweighs the deviation effect, the (µ, ρφ)1-efficient
frontier is empty or non-empty.
These effects show that spectral risk measures exhibit both properties of location measures

and deviation measures simultaneously. Especially, the former is a reasonable requirement for
monetary and regulatory risk measurement (“risk”), as an increase in a financial position’s mean
should result in reduced solvency capital requirements. At the same time, the location property
may lead to the non-existence of the minimum-spectral risk portfolio when applied to portfolio
selection (“decision”). We summarize as follows.

Extension 3.8. For m = 2 risky assets, the assumption of (µ, ρφ)-efficiency is a sufficient,
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although not necessary, condition for the existence of the minimum-spectral risk portfolio and
the non-emptiness of the (µ, ρφ)1-efficient frontier. For a risk free asset and m = 2 risky assets
with −ρφ(XMSP ) < X0 < E(XMSP ), the assumption of (µ, ρφ)-efficient risky basic assets is a
sufficient, although not necessary, condition for Tobin separation.

The sufficiency immediately follows from the relations E(X1) < E(X2) ∧ ρφ(X1) < ρφ(X2) in
connection with the convexity of spectral risk measures; Example 3.7 shows the non-necessity.
Considering m ≥ 2 risky assets and omitting the efficiency restriction does not change the

results from the two-asset framework either.

Extension 3.9. For m ≥ 2 risky assets and in the absence of efficiency restrictions,

1. if the (µ, ρφ)1-efficient frontier is non-empty, it is a concave curve that is piecewise linear for
comonotonic subsets of alternatives;

2. if the (µ, ρφ)1-efficient frontier is non-empty and a risk free asset with −ρφ(XMSP ) < X0 <

E(XMSP ) exists, the (µ, ρφ)2-efficient frontier is a straight line through the risk free asset
and the tangency portfolio.

For the proof, see Benati (2003), Theorem 2, in connection with (13) and (18) for the linearity
property.

Finally note that the linearity of the (µ, ρφ)2-efficient frontier in Extension 3.9, part 2, is valid
under arbitrary distributions, as the derivation in (17) and (18) only relies on the properties of the
spectral risk measure, but does not impose any assumption on the underlying random variable X.
Especially, the linearity preserves under the assumption of normally distributed returns, which
is common in the theoretical literature on portfolio selection with Conditional Value-at-Risk
and spectral risk measures as yet (e.g., Alexander/Baptista (2002), Alexander/Baptista
(2004), De Giorgi (2002), Deng et al. (2009)). For this case, De Giorgi (2002), Section 5.1,
has proved the following proposition, which is a special case of the more general Extension 3.9.

Proposition 3.10. For one risk free asset and m ≥ 2 risky assets with multivariate normally
distributed returns, −ρφ(XMSP ) < X0 < E(XMSP ), and in the absence of efficiency restrictions,

1. if the (µ, ρφ)1-efficient frontier is non-empty, the (µ, ρφ)2-efficient frontier is a straight line
through the risk free asset and the tangency portfolio;

2. if the (µ, ρφ)1-efficient frontier is non-empty, the tangency portfolios in the (µ, σ2)- and the
(µ, ρφ)-framework coincide.

Note that under the assumption of normally distributed returns the portfolios on the (µ, σ2)2-
and the (µ, ρφ)2-efficient frontiers coincide, but are still different in shape: While the (µ, σ2)2-
efficient frontier is a strictly concave square root function, the (µ, ρφ)2-efficient frontier is a
straight line. As a consequence, the choice of optimal portfolios will also differ fundamentally
under the variance and spectral risk measures, respectively.
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4. Optimal portfolios

4.1. Determination of optimal portfolios

In order to establish our integrated portfolio selection approach, we now turn to the choice of
optimal portfolios (“decision” context).

In the prevailing literature, optimal portfolios are chosen by fixing a certain level of expected
return µ̄, and finding the corresponding portfolio on the (µ, ρ)-efficient frontier (e.g., Adam et al.
(2008), Bassett et al. (2004), Benati (2003), Bertsimas et al. (2004), De Giorgi (2002),
Krokhmal et al. (2002), Rockafellar/Uryasev (2000)). Unlike this limited analysis, we
apply a more general tradeoff analysis, which explicitly models an investors (µ, ρ)-preferences in
the form of a (µ, ρ)-utility function.

In the (µ, σ2)-framework, the limited analysis and the tradeoff analysis are equivalent ap-
proaches. Searching for the (µ, σ2)2-efficient frontier requires solving

min
β≥0,γ∈R

1
2 · V ar(Xβ,γ) (20)

s.t. E(Xβ,γ) = µ̄ ≥ E(XMV P ),

which can be written in the tradeoff form

max
β≥0,γ∈R

E(Xβ,γ)− λ̄

2 · V ar(Xβ,γ). (21)

We refer to (21) as the mean-variance utility function. The two problems (20) and (21) with
parameters µ̄ and λ̄, respectively, are equivalent if and only if µ̄ = X0 + (E(XT ,σ2)−X0)2

λ̄·V ar(XT ,σ2) (e.g.,
Steinbach (2001), Theorem 1.9). Due to this one-to-one-correspondence between µ̄ and λ̄,
one can chose between two equivalent approaches for optimal portfolio selection. As a first
approach (limited analysis), an investor can fix a certain level of expected return µ̄. The optimal
portfolio then is given by the corresponding portfolio on the (µ, σ2)2-efficient frontier. As a
second approach (tradeoff analysis), the same optimal portfolio obtains if the investor applies
the indifference curve induced by the mean-variance utility function (21) with risk aversion
λ̄ = (E(XT ,σ2)−X0)2

(µ̄−X0)·V ar(XT ,σ2) to the (µ, σ2)2-efficient frontier.
From a decision theoretic perspective, the mean-variance utility function (21) follows from the

assumptions of an expected utility maximizer with constant absolute risk aversion λ = λ̄ and nor-
mally distributed returns (e.g., Bamberg (1986), p. 20). These assumptions are well-established
in portfolio selection due to their striking analytical advantages (e.g., Alexander/Baptista
(2002), Lintner (1969), Sentana (2003)).

In the (µ, ρφ)-framework, the situation is fundamentally different. Searching for the (µ, ρφ)2-
efficient frontier requires solving

min
β≥0,γ∈R

ρφ(Xβ,γ) (22)

s.t. E(Xβ,γ) = µ̄ ≥ E(XMSP ),
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which has a tradeoff version of the form

max
β≥0,γ∈R

(1− λ̄) · E(Xβ,γ)− λ̄ · ρφ(Xβ,γ), λ̄ ∈ [0, 1]. (23)

For reasons stated below, we refer to (23) as spectral utility function. While the two problems (22)
and (23) induce the same (µ, ρφ)2-efficient frontier (e.g., Krokhmal et al. (2002), Theorem 3,
Acerbi/Simonetti (2002), Proposition 4.2), we no longer observe a one-to-one correspondence
between µ̄ and λ̄. As Tobin separation holds in Setting 2, the relevant first-order condition of
(23) is given by

d(·)
dβ = (E(XT,ρφ)−X0)− λ̄ · (E(XT,ρφ) + ρφ(XT,ρφ)), (24)

and has

λ̄ =
E(XT,ρφ)−X0

E(XT,ρφ) + ρφ(XT,ρφ) ≥ 0. (25)

as a unique solution. Obviously, λ̄ does not depend on µ̄, so an investor’s specific (µ, ρφ)-
preferences in the form of a spectral utility function with risk aversion λ̄ do not imply a unique
level of expected return µ̄. In other words, the limited analysis is not covered by the more
general tradeoff analysis anymore. Hence, for the choice of an optimal portfolio it is no longer
sufficient to fix a certain level of expected return µ̄ and to find the corresponding portfolio on the
(µ, ρφ)2-efficient frontier as within the limited analysis. Rather, this approach neglects the fact
that certain levels of expected return are not under an investor’s consideration if she maximizes
a spectral utility function. It instead becomes necessary to apply the tradeoff analysis, which
finds the optimal portfolio at the tangential point between the indifference curves induced by the
spectral utility function (23) and the (µ, ρφ)2-efficient frontier. This constitutes our integrated
portfolio selection approach.
The spectral utility function (23) receives strong support also from a decision theoretic

perspective. Besides the two components (negative) mean −E(X) and the spectral risk measure
ρφ(X), the negative convex combination πφ(X) := −ρφ(X) = (1−λ) ·E(X)−λ ·ρφ(X), λ ∈ [0, 1]
satisfies (up to the algebraic sign) the properties of spectral risk measures as well (Acerbi
(2002), Proposition 2.2). Therefore, the determination of the (µ, ρφ)-efficient frontiers and the
consequent choice of optimal portfolios by maximizing a spectral utility function πφ are based
on one consistent axiomatic, and thus integrated, framework. However, this framework is still
based on the underlying regulatory concept of diversification, which relates exclusively to the
dependence structure.
Note that any negative spectral risk measure is a spectral utility function. Splitting up the

risk spectrum φ into

φ(p) = φ(1) + (1− φ(1)) · φ̂(p), where φ̂(p) = φ(p)− φ(1)
1− φ(1) , φ(1) ∈ [0, 1], (26)

shows that the corresponding spectral utility function indeed becomes a reward-risk model of the
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form

πφ(X) = −ρφ(X) = φ(1) · E(X)− (1− φ(1)) · ρφ̂(X). (27)

Therefore, the integrated portfolio selection approach is in line with Acerbi/Simonetti (2002),
who note that “minimizing a Spectral Measure is already in some sense ‘minimizing risks and
maximizing returns at the same time’” (p. 10). However, these authors do not consider portfolio
selection problems within an integrated framework as we do.

Based on the above argument we give the following definition, which implements the tradeoff
analysis.

Definition 4.1. A portfolio is called optimal if it maximizes a utility function π over a set of
alternatives X .

The optimal portfolios are located where the indifference curves induced by the mean-variance
utility function (21) and the spectral utility function (23) are tangent to the (µ, ρ)-efficient
frontiers. As the analysis so far has been based on the (µ, σ2)- and the (µ, ρφ)-plane, the induced
indifference curves both are linearly increasing with slope dE

dV ar = λ
2 ≥ 0 and dE

dρφ = λ
1−λ ≥ 0,

respectively. Note that for the mean-variance utility function and the spectral utility function,
an investor’s risk aversion increases with increasing λ, as the corresponding certainty equivalents,
π(X) and πφ(X), decrease.

4.2. The mean-variance utility function and full diversification

As has been argued in Section 3, the (µ, σ2)2-efficient frontier is a strictly concave curve. The
marginal rate of transformation according to (15) is

dE
dV ar =

E(XT,σ2)−X0

2 · β · V ar(XT,σ2) ∈ (0,∞), β ∈ (0,∞). (28)

Similarly, the (µ, σ2)1-efficient frontier corresponds to the strictly concave upper branch of a
parabola. Its marginal rate of transformation according to (11) is given by

dE
dV ar = E(X1)− E(X2)

2 · (γ · a+ b) ∈ (0,∞), γ ∈ (−∞, γMV P ). (29)

Taking into account that the indifference curves of the mean-variance utility function (21) are
linear, i.e., the marginal rate of substitution dE

dV ar = λ
2 is constant, we immediately get the

following proposition (see Figure 5).

Proposition 4.2. Suppose an investor maximizes the mean-variance utility function (21) with
respect to β and γ in Settings 1 and 2, respectively. Then

β∗ =
E(XT,σ2)−X0

λ · V ar(XT,σ2) , (30)

γ∗ = γMV P −
E(X2)− E(X1)

λ · a
. (31)
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We are now prepared to characterize the concept of diversification underlying the traditional
(µ, σ2)-framework. First, consider the case with a risk free asset. The set of the (µ, σ2)2-efficient
portfolios is given by β ∈ [0,∞), where β = 0 describes the risk free asset and β = 1 corresponds
to the tangency portfolio. The observations are as follows.

– Positive risk premium: A positive risk premium is a necessary and sufficient condition for
diversification, i.e., β∗ > 0⇔ E(XT,σ2)−X0 > 0.

– Comonotonicity: As the risk free asset and the tangency portfolio are comonotonic, diversifi-
cation also obtains for comonotonic assets.

– Efficient versus optimal portfolios: Any (µ, σ2)2-efficient portfolio β ∈ [0,∞) can be optimal
if the risk aversion is chosen adequately as

λ(β∗) =
E(XT,σ2)−X0

β∗ · V ar(XT,σ2) ≥ 0; (32)

thus, the set of (µ, σ2)2-efficient portfolios and the set of optimal portfolios coincide.

– Comparative risk aversion: The investment in the risk free asset is continuously increasing in
the risk aversion λ, with lim

λ→0
β∗ =∞ and lim

λ→∞
β∗ = 0.

Now consider the case without the risk free asset. The set of the (µ, σ2)1-efficient portfolios is
given by γ ∈ (−∞, γMV P ], where γ = 0 corresponds to the risky asset X2. The observations are
as follows:

– Positive excess return: A positive excess return is a necessary and sufficient condition
for diversification between the minimum-variance portfolio and the risky asset X2, i.e.,
γ∗ < γMV P ⇔ E(X2)− E(X1) > 0.

– Comonotonicity: As a > 0 and b < 0 for any correlation coefficient corr(X1, X2) ∈ [−1, 1],
diversification obtains for any dependence structure, and also for comonotonic risky assets.

– Efficient versus optimal portfolios: Any (µ, σ2)1-efficient portfolio γ ∈ (−∞; γMV P ] can be
optimal if the risk aversion is adequately chosen as

λ(γ∗) = E(X2)− E(X1)
(γMV P − γ∗) · a

≥ 0; (33)

thus, the set of (µ, σ2)1-efficient portfolios and the set of optimal portfolios, for any correlation
coefficient corr(X1, X2) ∈ [−1, 1], coincide.

– Comparative risk aversion: The investment towards the minimum-variance portfolio is
continuously increasing in the risk aversion λ, with lim

λ→0
γ∗ =∞ and lim

λ→∞
γ∗ = γMV P .

The concept of diversification underlying the traditional (µ, σ2)-framework is based on the
tradeoff between an investor’s risk aversion and a positive risk premium, i.e., on the tradeoff
between reward and risk. This follows from the fact that in both Settings 1 and 2, a positive risk
premium and excess return is a necessary and sufficient condition for diversification, β∗ > 0 and
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Figure 5: Choice of optimal portfolios with the mean-variance utility function

γ∗ < γMV P , respectively. This result is independent of the dependence structure between the
risky assets; it also holds for comonotonic risky assets, and the risk free asset and the tangency
portfolio, respectively. The dependence structure affects this tradeoff indirectly by affecting the
variance of the tangency portfolio and the minimum-variance portfolio, but it is not the origin of
diversification. For these reasons, we refer to this kind of diversification as full diversification.
Although full diversification under comonotonicity, and even for corr(X1, X2) = 1, may appear
counter-intuitive at first sight, it is consistent with the tradeoff between reward and risk: Even
if there is no additional diversification benefit from the dependence structure, an investor may
prefer a (µ, σ2)-efficient reward-risk profile that lies in the interior of the comonotonic assets’
reward-risk profiles.

4.3. Spectral utility functions and limited diversification

We take the case of a risk free asset as a starting point, as it brings us to our main result. The
(µ, ρφ)2-efficient frontier is a straight line through the risk free asset and the tangency portfolio.
Its constant marginal rate of transformation according to (18) is given by

dE
dρφ

=
E(XT,ρφ)−X0

ρφ(XT,ρφ)− ρφ(X0) ≥ 0. (34)

As the indifference curves of the spectral utility function are linear as well, and the marginal
rate of substitution dE

dρφ = λ
1−λ is constant, we immediately obtain the following Proposition (see

Figure 6).6

Proposition 4.3. Suppose an investor maximizes a spectral utility function (23) with respect to
β in Setting 2. Then

β∗ =

 0 if
E(XT,ρφ )−X0

ρφ(XT,ρφ )−ρφ(X0) ≥
λ

1−λ

∞ else
. (35)

In order to provide a more real-world interpretation, we impose the short-sale constraint
β ∈ [0, 1], and get β∗ ∈ {0, 1}, i.e., the investor either invests in the risk free asset (β = 0) or the
6Without loss of generality, we assume that if the marginal rate of transformation and the marginal rate of
substitution coincide, the investor decides for a corner position.
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tangency portfolio (β = 1).
Recall from Section 2.1 and Proposition 2.3 that spectral risk measures and spectral utility

functions are based on a regulatory concept of diversification. Within that concept, and unlike
under the variance, it is no longer the tradeoff between reward and risk, that induces diversification.
Instead, non-comonotonicity is a necessary condition for a positive diversification benefit. For that
reason, we do not observe diversification between the risk free asset and the tangency portfolio,
which are comonotonic. Spectral utility functions restrict diversification on the elementary
level “risk free versus risky”, as either the exclusive investment in the risk free asset or in the
tangency portfolio remain as optimal solutions. We refer to this portfolio structure as limited
diversification. Note that, under limited diversification, a risk averse investor may decide for the
exclusive investment in the tangency portfolio though a risk free asset is available. On the other
hand, a risk averse investor may also decide for the exclusive investment in the risk free asset
though the tangency portfolio offers a positive risk premium. Both portfolio selection decisions
appear as rather counter-intuitive when compared to the traditional (µ, σ2)-framework. In more
detail, we have the following observations:

– Positive risk premium: A positive risk premium is neither necessary nor sufficient for diversi-
fication, β∗ ∈ (0, 1).

– Comonotonicity: Diversification does not occur between a risk free and a risky asset, which
are comonotonic.

– Efficient versus optimal portfolios: The set of (µ, ρφ)2-efficient portfolios, β ∈ [0, 1], does
not coincide with the set of optimal portfolios, β∗ ∈ {0, 1}, which only contains the corner
positions.

– Comparative risk aversion: The optimal proportion β∗ is not continuous in the risk aversion
λ. Up to a certain degree of risk aversion, the exclusive investment in the tangency portfolio
is optimal, and subsequently the optimum jumps towards the exclusive risk free investment.
The underlying concept of risk aversion is consistent in the sense that a more risk averse
investor demands a higher risk premium for switching to the risky investment (see (35)).

From a decision theoretic perspective, limited diversification is not a convincing result, as there
is no reason for excluding other (µ, ρφ)2-efficient portfolios from being optimal, merely because
they belong to a comonotonic set of alternatives. This only means that both expected return and
spectral risk increase linearly. It might well be possible, and is economically plausible, that an
investor prefers a (µ, ρφ)2-efficient reward-risk profile somewhere in the interior of a comonotonic
set of alternatives.

Further, Extension 3.9 shows that the all-or-nothing decision holds in settings that are far more
general than our Setting 2, as the (µ, ρφ)2-efficient frontier is a straight line through the risk free
asset and the tangency portfolio also for m ≥ 2 risky assets, and for arbitrary distributions of
the risky asset-returns. Therefore, the all-or-nothing decision also obtains under the assumption
of normally distributed returns, and thus provides an interesting result: Although the efficient
frontiers in the (µ, σ2)- and the (µ, ρφ)-framework coincide, the choice of optimal portfolios differs
fundamentally between full diversification and limited diversification.
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Figure 6: Choice of optimal portfolios with the spectral utility function

The case without the risk free asset yields similar results. The (µ, ρφ)1-efficient frontier is a
concave curve that for comonotonic subsets of alternatives is piecewise linear. For a comonotonic
subset of alternatives Xγ , γ ∈ [γd, γu], the constant marginal rate of transformation is given by
(see (14)):

dE
dρφ

= E(Xγd)− E(Xγu)
ρφ(Xγd)− ρφ(Xγu) . (36)

Together with the linear indifference curves of the spectral utility function, i.e., the marginal rate
of substitution dE

dρφ = λ
1−λ is constant, we immediately get the following result (see Figure 6).

Proposition 4.4. Suppose an investor maximizes a spectral utility function (23) with respect to
γ in Setting 1. Then

γ∗ ∈ {−∞, γij,1:k, . . . , γij,k:k}. (37)

Diversification under spectral risk measures and risky assets thus provides similar results to
the case with a risk free asset.

– Positive excess return: A positive excess return is neither necessary nor sufficient for diversifi-
cation, γ∗ ∈ (−∞, γMSP ).

– Comonotonicity: For comonotonic subsets of alternatives, the (µ, ρφ)1-efficient frontier is a
straight line, so that diversification within this subset does not occur. Reward-risk profiles
that lie in the interior of a comonotonic subset of alternatives thus can never be optimal.

– Efficient versus optimal portfolios: The set of optimal portfolios is restricted to the (µ, ρφ)1-
efficient boundaries of the comonotonic subsets of alternatives, whereas the set of (µ, ρφ)1-
efficient portfolios also contains the interior portfolios. Therefore, the set of efficient portfolios
and the set of optimal portfolios do not coincide, and only limited diversification prevails.

– Comparative risk aversion: The optimal proportion γ∗ is not continuous in the risk aversion
λ. With risk aversion increasing, the same proportion remains optimal until the portfolio
jumps to the next corner position.
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5. Discussion

The findings on limited diversification within our integrated framework have strong implications
for the use of spectral risk measures and spectral utility functions. If an investor does not agree
with either investing exclusively risk free or investing exclusively in risky assets, spectral utility
functions are not a reasonable approach for choosing optimal portfolios. As a consequence of our
integrated framework, the portfolio selection then cannot be based on (µ, ρφ)-efficient frontiers
either. Therefore, the (µ, ρφ)-framework lacks a foundation, at least from a decision theoretic
perspective.
Our results also raise doubts on the validity of the empirical findings on portfolio selection

with Conditional Value-at-Risk and spectral risk measures. The relevant literature compares
the composition of optimal portfolios in the (µ, σ2)- and the (µ, ρφ)-framework based on a fixed
level of expected return µ̄ ∈ [X0, E(XT,ρφ)]. This limited analysis, however, is insufficient as it
neglects the fact that an (µ, ρφ)-investor in our more general integrated framework would not
choose expected returns in this interval, but always prefers one of the corner positions µ̄ = X0

or µ̄ = E(XT,ρφ) to any interior portfolio. In other words, by fixing a certain level of expected
return µ̄ ∈ (X0, E(XT,ρφ)) diversification is artificially enforced, although being absent naturally.
Therefore, a non-optimal portfolio is regularly assumed to be optimal in these studies.

Moreover, experimental evidence is mixed. A first strand of literature shows that investors
diversify between a risk free and a risky asset (e.g., Benartzi/Thaler (1999), Rapoport (1984)).
In another strand of literature underdiversification is documented (e.g., Mitton/Vorkink
(2007)). However, underdiversification and limited diversification, as in the present paper, are
different concepts. Whereas underdiversification denotes the investment in only a few assets,
limited diversification refers to the fact that only a few of the (µ, ρφ)-efficient portfolios are
actually chosen by an investor; whether these portfolios consist of a few or a large number of
assets is not subject to considerations of the present paper. On the other hand, the (µ, ρφ)-
framework might be a possible explanation for the stock market participation puzzle. For
example, Mankiw/Zeldes (1991) find that only 25% of investors hold stocks, which can easily
be reconciled with a (µ, ρφ)-framework, but not with a (µ, σ2)-framework.
We thus conclude that the use of spectral risk measures for portfolio selection appears

inappropriate from a decision theoretic, an empirical and, partly, an experimental perspective.
In a sense, already Markowitz (1952) raised serious doubts in this respect by stating that
“diversification is both observed and sensible; a rule of behavior which does not imply the
superiority of diversification must be rejected both as a hypothesis and as a maxim” (p. 77).

The all-or-nothing decisions under spectral risk measures also provide counter-intuitive results
in that they may lead to out-of-equilibrium capital markets. If we assume a representative
investor economy with a risk free asset, due to (35) it might be that only the risk free asset is
demanded, and risky assets are not held. An equilibrium in the sub-market for risky assets thus
is not established and they are not in zero net supply either. Conversely, it might also be that
there is no demand and no need for the risk free asset at all.

While in the present literature on spectral risk measures these results so far have been
overlooked, our criticism is well-known from the dual theory of choice, which provides the
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representation

πD(X) =
1∫

0

F ∗X(p)dv(p) (38)

(e.g., Denneberg (1988), Roell (1987), Yaari (1987)). The dual utility function v coincides
with the primitive function Φ of the risk spectrum. For the representation of risk aversion, v has
to be concave with v(0) = 0, v(1) = 1, recovering the class of spectral risk measures and spectral
utility functions, respectively. Within this framework, already Yaari (1987), Section 6, notes
that the dual theory of choice tends towards all-or-nothing decisions instead of diversification.
On the other hand, Hadar/Seo (1995) give conditions under which a dual investor diversifies
between two (or more) risky assets. Nonetheless, they do not consider a risk free asset, and they
do not refer to the portfolio structure itself as we do.

6. Conclusions

In this paper, we applied Conditional Value-a-Risk and, as its natural extension, spectral risk
measures to some simple portfolio selection problems. Our approach differs from the previous
literature in two respects. First, we use a finite state space approach to show that the efficient
frontiers are piecewise linear in the case of risky assets, and linear in the case of an additional
risk free asset. By contrast, in the traditional mean-variance framework the efficient frontiers are
strictly concave in any case. Second, we show that choosing optimal portfolios by fixing a certain
level of expected return and finding the corresponding portfolio on the efficient frontier (limited
analysis), as is done in the relevant literature so far, provides misleading results. By applying the
indifference curves induced by a spectral utility function (tradeoff analysis), which naturally arises
both from a decision theoretic and an optimization perspective, we obtain fundamentally different
optimal portfolios. If a risk free asset is available, diversification is never optimal. Likewise,
in the case of risky assets we find only limited diversification. By contrast, the mean-variance
framework shows full diversification in any case.

The reason is that spectral risk measures originally have been introduced for the assessment
of solvency capital (“risk”). The underlying regulatory concept of diversification regards the
dependence structure between the assets as the only source for positive diversification benefits.
For the special case of perfect positive dependence (comonotonicity) the diversification benefit
is zero, which is an adequate requirement for the assessment of solvency capital. Traditional
mean-variance portfolio selection (“decision”), by contrast, is based on a fundamentally different
concept of diversification that refers to the tradeoff between reward and risk, and that is only
indirectly affected by the dependence structure between the assets. The incompatibility of these
conflicting concepts of diversification produces limited diversification.

In formal terms, the concept of diversification underlying spectral risk measures (and spectral
utility functions) is determined jointly by the properties of subadditivity (superadditivity) and
comonotonic additivity. The relevant literature is focused on subadditivity only and omits
considering comonotonic additivity, e.g., “sub-additivity is an essential property also in portfolio-
optimization problems” (Acerbi/Tasche (2002a), p. 381). We indeed agree that subadditivity
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is an essential property for the assessment of solvency capital and for portfolio selection. However,
we have shown that comonotonic additivity is essential only for the assessment of solvency capital
(“risk”), but leads to paradoxical results if applied to portfolio selection (“decision”).

Notwithstanding these findings, we do not have any doubt that an axiomatic framework is
useful to avoid mathematical and contextual inconsistencies, and that it preserves investors from
choosing a risk measure or utility function in an ad hoc manner. On the other hand, axiomatic
approaches are by no means a universal concept that can be applied to any context regardless
of the original context in which they have been developed. This view contrasts with that of
Acerbi/Tasche (2002a) (p. 380), who state that “in our opinion speaking of non-coherent [by
this, they basically mean what we call in the present paper “non-spectral”] measures of risk is (..)
useless and dangerous. In our language, the adjective coherent is simply redundant.” Instead, we
have seen that it is insufficient to claim that axiomatic approaches are per se superior without
taking account of the consequences from both an economic and a decision theoretic perspective.
As a more appropriate alternative to spectral risk measures, and as an agenda for future research,
we would instead propose convex risk measures, which do not require comonotonic additivity
(e.g., Föllmer/Schied (2002)).

A. Extensions of the (µ, σ2)-framework

Considering m ≥ 2 risky assets and omitting the efficiency restriction yields the well-known
mutual fund theorem (Merton (1972), Section 3): The (µ, σ2)1-boundary can be generated by
any two distinct (µ, σ2)1-boundary portfolios. The (µ, σ2)1-efficient frontier lies on the upper
branch of the (µ, σ2)1-boundary starting from the minimum-variance portfolio. For a rigorous
analytical treatment see, for example, De Giorgi (2002), Section 4.1. Recall from Proposition 3.1
that the (µ, σ2)1-efficient frontier for two risky assets is a strictly concave curve for any correlation
coefficient corr(X1, X2) ∈ [−1, 1]. As the case of m ≥ 2 risky assets is formally equivalent to the
case of two distinct (µ, σ2)1-boundary portfolios, we obtain the following extension.

Extension A.1. For m ≥ 2 risky assets and in the absence of the efficiency restriction, the
(µ, σ2)1-efficient frontier is a strictly concave curve that starts from the minimum-variance
portfolio.

Also, it is well-known that by additionally considering a risk free asset, Tobin separation from
Proposition 3.4 still holds. For a full analytical treatment see again De Giorgi (2002), Section
5.1. We summarize as follows.

Extension A.2. For a risk free asset and m ≥ 2 risky assets with E(X0) < E(XMV P ) and in
the absence of the efficiency restriction, the (µ, σ2)2-efficient frontier is a strictly concave curve
through the risk free asset and the tangency portfolio.
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