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Abstract

FAR modelling of the non-parametric density function is proposed to improve Value-at-Risk (VaR)
analysis by taking into account the relative advantages of parametric and non-parametric models in a
hybrid manner. In particular, this approach enables us to use the intraday information for forecasting
the time-varying daily return density function. It is well-established that VaR forecasts obtained from
parametric and non-parametric models involve a trade-off between minimising the associated economic
costs and providing the valid coverage of VaR. The Monte Carlo simulation study and empirical evalua-
tions of VaR, based on thirty components of the Dow Jones Industrial Average and their equal weighted
portfolio, clearly demonstrate that the overall performance of the proposed hybrid model is superior to
those of both the parametric and the non-parametric models in terms of several (sometimes conflicting)
criteria. In particular, the proposed hybrid approach is shown to simultaneously increase coverage ability,
reduce economic costs and enhance the statistical validity. Hence, it is recommended to use the hybrid
functional autoregressive non-parametric density approach (along with another hybrid model called the
filtered historical simulation approach) for improving an internal VaR model for both regulators and
banks in a fair and satisfactory manner.
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1 Introduction

Value-at-Risk (VaR) has been used as the central measure of risk in the banking regulatory framework. VaR

was popularised by the so-called RiskMetric of J. P. Morgan. It was first established in 1989, when Dennis

Weatherstone, the chairman of J. P. Morgan, asked for a daily report measuring and explaining the risk of

his firm and nearly four years later in 1992, J. P. Morgan launched RiskMetrics. Moreover, VaR was more

popular as a risk measure chosen by investment banks to measure their portfolio risk for the benefit of bank-

ing regulators (RiskMetrics, 1996). VaR was also strongly recommended by regulatory organisations. In

1997, the U.S. Securities and Exchange commission ruled that public corporations must disclose quantita-

tive information about their derivatives activity. Major banks decided to comply with this rule by including

VaR information in their financial statements. Furthermore, in 1999, the worldwide adoption of the Basel II

Accord stimulated financial institutions to use VaR. Nowadays, most major banks report the VaR forecast to

the regulator who supervises the bank’s risk management.

The urgent need of an accurate internal VaR model was demonstrated during the 2007–2009 global

financial crisis. The role of financial risk management has become a notable concern for survival at both the

micro- (firm) and macro-level (nationwide). Furthermore, it is critical for banks to accurately measure and

disclose the level of risk in their business that is of interest to their investors, creditors and regulators. While

the use of VaR as a summary financial risk measure is appealing in theory and practice, difficulties arise in

searching for the best VaR model which minimises economic cost and maximises coverage ability.

There have been major developments of the VaR model in the last two decades (see Jorion, 2006 for an

excellent survey). However, challenges remain due to the difficulty of modelling a time-varying non-normal

return distribution as well as forecasting an extreme value. The previous literature on the VaR modelling

falls into three groups: parametric, non-parametric and hybrid approaches. First, there is the parametric ap-

proach such as GARCH models and extreme value distribution models (hereafter, EVT models). However,

it is well known that the parametric approach is intrinsically bound to suffer from the following limitations.

Particularly, there are uncertainties in (i) the distribution assumption, (ii) the time dependent specification

of the higher order moments, and (iii) the computational complexities of the numerical optimisation algo-

rithm. Extensive empirical evidence shows that stock return distributions are fat-tailed.1 Hence, a normal

distribution always underestimates the risk of the fat-tailed distributions observed in financial time series.

For example, it is well-established that Gaussian GARCH underestimates VaR (Netftci, 2000). RiskMetrics

(hereafter RM) is a typical example using the normal distribution (Johansson et al., 1999). The Student’s

t-distribution is thus a preferable choice. It is however a symmetric distribution so that it cannot capture

the asymmetry of the asset return distribution (Giot and Laurent, 2003; Mittnik and Paolella, 2000). Recent

studies model the fat-tail and the asymmetry of the asset return distribution by allowing for higher-order mo-

ments with a specific parametric distribution such as the skewed generalised error distribution (Theodossiou,

1998). Furthermore, some progress has been made in modelling the dynamics of the higher order moments

1Mandelbrot (1963) first captured the fat-tail of stock returns distribution and criticised the extensive reliance on the normality
assumption for asset pricing and investment theory. Fama (1963, 1965), Clark (1973) and Blattberg and Gonedes (1974) proposed
allowing the stock returns to be non-normal and developing the statistical modelling of stock returns as draws from a fat-tailed
distribution.

2



within the GARCH framework; GARCH with skewness (GARCHS, Harvey and Siddique, 1999), GARCH

with kurtosis (GARCHK, Brooks et al., 2005) and GARCH with both skewness and kurtosis (GARCHSK,

Jondeau and Rockinger, 2003). Bali et al. (2008) demonstrate that the accuracy of a VaR forecast improves

significantly when conditional higher order moments are modelled by adopting an asymmetric distribution

function. However, the contemporaneous and the time-dependent structure among the moments are too

complicated to be specified completely (Jondeau and Rockinger, 2003). EVT models consider the extreme

value distribution given a block size.2 The Generalised Extreme Value (GEV) distribution and the Gener-

alised Pareto Distribution (GPD) are popular and frequently employed in VaR modelling. Since EVT models

provide a conservative VaR, they are likely to overestimate VaR, leading to an expensive cost.

Second, a non-parametric model is popular among practitioners. A simple historical simulation (here-

after, HS) is found to be the industry standard (Perignon et al., 2008; Perignon and Smith, 2009). In spite of

its popularity, severe problems are reported in the literature Barone-Adesi et al. (1999, 2002); Jorion (2006)

due to its ignoring the time-varying nature of the asset return distribution. Since HS is intrinsically sensitive

to the existing state, it cannot provide a valid VaR when the underlying regime changes.

The limitations associated with both parametric and non-parametric models lead to an alternative hybrid

model. The hybrid model is to mix the dominant genes taken from both the parametric and non-parametric

models to minimise the economic cost and maximise the coverage ability. For instance, a filtered historical

simulation (hereafter, FHS) combines the non-parametric density function with the GARCH filtration of the

return data. It is reported that FHS generally outperforms the parametric and the non-parametric models

Barone-Adesi et al. (1999, 2002); Kuester et al. (2006); Pritsker (2001). Hence, a more flexible hybrid

approach is called for, in order to obtain a more accurate forecast of a time-varying non-normal return

distribution.

Recently, a conditional autoregressive quantile model (hereafter CAViaR, Engle and Manganelli, 2004)

utilises an empirical quantile without any assumption on the distribution for VaR modelling. However, the

performance has been mixed, so far Engle and Manganelli (2004); Kuester et al. (2006).

In line with recent developments in risk modelling, this paper contributes to this growing literature by

introducing a novel hybrid technique which is capable of modelling and forecasting a non-parametric density

function of the asset return in a flexible manner. In the context of developing hybrid models for the density

function, our study utilises the functional autoregressive modelling of the non-parametric density function

(Bosq, 2000; Cardot et al., 1999, 2003, 2007; Park and Qian, 2007, 2011, hereafter FAR) to forecast a daily

VaR using intraday data.3 We develop a two-stage approach for VaR forecasting. First, we construct the

sequence of empirical intraday density functions by a kernel density estimation using the high-frequency

data and then we model the time-dependence of the density function by an autoregressive process in the

functional space. Based on the estimated model, we can easily obtain a density forecast conditional on

the past information set. This first-stage is well established in Park and Qian (2007, 2011) but it needs an

additional stage to extend the intraday return density function to the daily return density function to obtain

2EVT draws the worst event out of the considered period (such as 1 week or 1 month) then uses them as an extreme sample.
3This functional approach is also in line with modelling the dynamics of economic functions recently documented by Bowsher

and Meeks (2008), employing a functional signal plus noise, (FSN)-ECM, and Kargin and Onatski (2008), employing a functional
autoregressive model for forecasting a yield-curve.
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a daily VaR. In the second-stage, therefore, we employ the Normal Inverse Gaussian function developed by

Bandorff-Nielsen (1997). While it is a parametric extension, it has the advantage of utilising the first four

moments obtained from the intraday density function.

FAR approach has three important advantages in density forecasting with the VaR application. First,

it models the dynamics of the non-parametric density function in the functional space. By estimating the

density function non-parametrically, we can avoid uncertainties from both misspecification and the esti-

mation errors in the parametric approach. On the other hand, the dynamics of the density function is too

complicated to be specified in a parametric way. In general, all moments and the locations of the density

function are contemporaneously related and their structure is time-dependent. A time-varying conditional

moments and quantile approach is unable to identify their true time-dependent structure. But FAR can spec-

ify the contemporaneous and time-dependent structure in a reduced form via an autoregressive operator. It

is therefore a much more attractive approach. Second, our proposed approach provides a framework for

a robust VaR application, successfully minimising the economic cost and maximising the coverage abil-

ity. Existing parametric and non-parametric models are unsatisfactory in the following sense: a parametric

model can minimise the economic cost but tends to underestimate the VaR (e.g., the GARCH family). A

non-parametric model can provide robust and conservative coverage but fails to minimise the economic cost

because the dynamics of the return distribution are neglected. The FAR approach overcomes these limita-

tions and provides the desirable features of VaR modelling. Third, it allows us to utilise intraday information

for financial risk management. The key issue is estimating and forecasting the daily risk in the investor’s or

bank’s asset portfolio. A return is calculated daily and the volatility of the return is the key measure of risk.

However, it has been documented in the market microstructure literature that the use of the high-frequency

data provides a better account of the daily volatility:(Andersen et al., 2001; Bollen and Inder, 2002). Ander-

sen and Bollerslev (1998) show how the high-frequency intraday returns contain valuable information for

the measurement of volatility at the daily level. Intraday returns encompass important information which is

relevant to market participants in forming their future expectations. This is especially true for large scale

institutional trading with active market movements. The intraday return distribution is a key input to access

the accumulated results of the daily return. The true interaction among traders happens at the intraday level

in all the liquid markets. Therefore, these arguments and the increased availability of the high-frequency

financial data motivate us to examine the daily return distribution using the high-frequency data. Given that

high-frequency financial data is often characterised as extremely dispersed and non-normally distributed

(Hasbrouck, 2007), FAR offers an ideal setting to abstract the daily volatility and the higher order moments

from high-frequency data.

We demonstrate the methodological advantage of FAR through extensive evaluation schemes using both

actual and simulated data. We first find that FAR is the best predictor for intraday return density forecasting,

outperforming alternative functional models such as AVE (IID density functions) and LAST (martingale

density function). Employing divergence criteria such as the Hilbert norm, uniform norm and entropy

measure for an analysis of the thirty stock components of the DJIA and their equal weighted portfolio over

2000–2008, we find that the density forecast estimated by FAR is closest to the realised density in terms of

‘closeness’ in a functional space. We also conduct a Monte Carlo simulation study in which we generate the
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sample based on the empirical findings, and evaluate the forecasting precision by comparing a VaR forecast

with a true VaR. Employing Bias, RMSE (Root Mean Square Error), MAE (Mean Absolute Error), MAPE

(Mean Absolute Percentage Error), and PMAD (Percentage Mean Absolute Deviation), we find that FAR

provides the best precision of VaR forecasting for all precision measures.

Moreover, we demonstrate its advantage for VaR applications by evaluating its performance against

existing popular models using a wide range of assessment criteria with 30 stocks and the equal-weighted

DJIA portfolio over 2000–2008. The validation of VaR models is investigated with the set of backtesting

tools. The backtesting is essential to the Basel committee’s decision to allow internal VaR models for capital

requirements. We adopt various backtesting tools developed in the academic literature and mentioned in the

regulatory documents. Backtesting is a formal framework to verify whether the actual loss is in line with

the projected loss. This involves systematically comparing the history of VaR forecasts with their associated

(portfolio) returns. When a model is well specified, the number of observations falling outside VaR should be

in line with the given nominal level. The number of excesses is known as the ‘number of exceptions’ (Jorion,

2006, p. 140). The number of exceptions exceeding the cut-off indicates that the model underestimates VaR.

If so, too little capital is allocated to the risk-taking units. The regulators impose penalties on banks that

adopt such an underestimated model. On the other hand, a number of exceptions lower than the cut-off

indicates that the model overestimates VaR, implying that the capital allocation is inefficient. Consider the

following assessment. First, coverage ability and economic cost are examined. The empirical coverage

probability and the predictive quantile loss are the conventional quantitative measures. We also examine the

performance by checking against the Basel Committee’s recommendations such as the Basel penalty zone

and the market risk capital requirement (hereafter, MRCR). The Basel Committee provides those measures

from sufficient simulation studies as well as empirical analyses of financial institutions. The empirical

coverage probability and the Basel penalty zone evaluate the coverage ability while the predicted quantile

loss and the MRCR evaluate economic cost. Second, regulators also require that formal statistical tests

should be conducted so as to evaluate the accuracy of the VaR forecast. To this end, we consider the

unconditional test (Kupiec, 1995), conditional coverage tests Christoffersen (1998); Engle and Manganelli

(2004) and dynamic quantile tests (Engle and Manganelli, 2004).

From the empirical evaluations of alternative VaR models, we observe that hybrid models such as FAR

and FHS outperform parametric models such as GARCH, EVT and CAViaR. The hybrid models obtain high

scores in all backtestings. The GARCH models tend to underestimate the VaR, as reported in Johansson et

al. (1999) and Netftci (2000). They perform badly in coverage ability evaluations. They are more often

rejected by all the conditional coverage tests but do well for the economic cost analysis. On the contrary,

the HS performs well in the coverage ability evaluations but badly in the economic cost analysis. It is

however often rejected by all the conditional coverage tests. This clearly demonstrates that there is a trade-

off between the two approaches. The EVT models mostly overestimate the VaR, as expected. They perform

badly for both the coverage ability evaluations and the economic cost analysis. They are often rejected by

the conditional coverage tests while the filtered EVT models are relatively less rejected by the dynamic

quantile tests. CAViaR is the worst performing model for all the backtestings. Therefore, the evaluation

results support that the dynamic modelling of non-parametric density functions outperforms both the static
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non-parametric models and the dynamic parametric models. Moreover, empirical findings that the hybrid

models outperform other models are consistently repeated for the alternative positions (the short and the

long position) and the alternative window sizes (of 250 and 500 business days).

The rest of this chapter is organised as follows. In Section 2, we describe the functional autoregressive

modelling for VaR forecasting, along with alternative VaR models. Section 3 provides an overview of the

existing backtestings in terms of quantitative measures and statistical tests. Section 4 presents the intraday

data used in the analysis. Section 5 provides the Monte Carlo simulation study and the empirical evaluation

of functional models and alternative VaR models using 30 components for DJIA and their equal weighted

portfolio. Section 6 gives some concluding remarks.

2 VaR Models

Quantitative financial risk management is generally performed on a daily basis: an asset return is calculated

daily and its volatility is measured as the core of the daily risk. Recently a better account of daily volatility

by utilising high-frequency data has been well documented in the market microstructure literature (Andersen

and Bollerslev, 1998; Andersen et al., 2001; Bollen and Inder, 2002). They explain that the intraday data

contains valuable information which is relevant to market participants for forming their future expectations.

Especially, those arguments are true for large institutional trading with active market movements. Hence, it

is key to access the daily return risk to understand the behaviour of the intraday return distribution. Also, the

increasing availability of high-frequency financial data motivates us to model the dynamics of the intraday

return distribution first and utilise it for forecasting the daily return risk. Furthermore, given that high-

frequency financial data often possesses extreme dispersion and is non-normally distributed (Hasbrouck,

2007), FAR offers an ideal way to abstract the daily volatility and higher moments from the high-frequency

data. We first present our proposed model below.

2.1 Hybrid Functional Autoregressive Modelling of Non-parametric Density

We assume that trading prices are observed in a fixed interval (e.g., 5-minute)4 and define an intraday return

by the first difference of the log price,

rti = lnPti− lnPt,i−1, t = 1, . . . ,T ; i = 1, . . . ,m (1)

where t and i denote the tth day and its ith intraday observation, respectively. Especially, Pt,0(= Pt−1,m)

denotes the close price yesterday, so we include overnight information in the first observation (rt1) at the

open time today. Further, the daily return is defined as the sum of the intraday returns:

rt =
m

∑
i=1

rti, t = 1, . . . ,T. (2)

4In practice, the trading action is not regular in time so that the frequency is generally irregular. We thus filter observations and
draw prices in a fixed time base, e.g., 9:35 AM, 9:40 AM, ..., 4:00 PM.
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In sum, we have the sequence of time series such that

X = (Xt)
T
t=1 and Xt = (rti)

m
i=1 , (3)

where X is the set of intraday return paths and Xt is the intraday return path at the tth day.

First, we assume that the intraday return series, rti ∈ Xt , is strictly stationary within a given day and

the intraday density function can be estimated for each time point t (day) given the sample observation.

Once we denote the intraday density function by ft , the sequence ( ft)
T
t=1 can be defined in the functional

space. Second, we assume that this local stationarity does not carry over to a longer horizon. This implies

that the time series (Xt ∈ X) is nonstationary, that is, the intraday density function is time-varying. These

assumptions are known as the “piecewise stationarity” of a stochastic process.5 In the general framework,

“piece” is taken as any appropriate time unit such as a day, week or month. Thus a day is a “piece” in our

study. FAR has been developed based on the “piecewise stationarity” condition for the observed stock return

series. The intraday return series is stationary in a day but it will be nonstationary in the long-run, that is,

each day would have a different intraday return distribution.

We assume that the time-varying intraday density function ( ft) follows an autoregressive process with

lag order one6

wt = Awt−1 + εt , t = 2, . . . ,T, (4)

where wt = ft −E f is the fluctuation of the density function from the well-defined common expectation of

the density function (E f ), A is an autoregressive operator on the Hilbert space (H ) satisfying ‖A‖ < 1,

and (εt)
T
t=1 is the sequence of the functional white noise process. Eq. (4) can be rewritten for the density

function:

ft = E f +Awt−1 + εt , t = 2, . . . ,T. (5)

Thus the one-step ahead forecast of the density function is obtained by the conditional expectation on the

past information set (Ft−1):

E [ ft |Ft−1] = E f +Awt−1. (6)

FAR is a very general modelling of the conditional autoregressive moments. For example, the centred

mean in (4), µ̃t = 〈x,wt〉, can represented by

µ̃t = 〈x,Awt−1〉+ 〈x,εt〉= 〈A∗x,wt−1〉+ηt , (7)

where A∗ is the adjoint of A, 〈·, ·〉 denotes the inner product on H , 〈ν ,u〉 =
´
R νu(u)du, and (ηt)

T
t=1 be-

comes the white noise process under the regular assumptions. The right hand side of (7) can be represented

by the infinite sum of polynomials, ∑
∞
k=1 ck

〈
xk,wt−1

〉
= ∑

∞
k=1 ckµ̃k,t−1, where µ̃k,t−1 is the first-lagged cen-

tered k-th order moment. This representation implies that the centred mean is specified by the linear com-

5Piecewise stationarity is well demonstrated by “Short-Time Fourier Transform” (Gabor, 1946) in the signal processing litera-
ture. The powerful spectral analysis, invented for stationary process, can be applied to nonstationary signals under this assumption.

6It is trivial to extend the model to longer lag orders such as an AR(p) model in a vector space. Furthermore, the higher lag
orders should be available for higher order FAR modelling.
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bination of all the first-lagged higher order moments. Hence, it includes ARCH-M as a very specific case.

Moreover, the centred second order moment, µ̃2t =
〈
x2,wt

〉
, is analogously expressed by all the first-lagged

higher moments. It is thus the generalised conditional autoregressive process of the second order moment.

These special cases appear in Park and Qian (2007) who derive ARCH and ARCH-M from FAR as special

cases. Furthermore, a conditional autoregressive quantile process could be represented as a special case of

FAR too. Intuitively, (5) can be applied to the quantile process. Let qt satisfy α =
´ qt
−∞

ft (s)ds. Then the

quantile process (qt) tends to revert to the α-quantile of E f (q̄), as long as the mean reverting property holds

in (5). This can be modelled by two prats; q̄ and the adjustment of the deviation between qt−1 and q̄. Hence,

it follows that qt = g(q̄,qt−1− q̄)+ ξt , where g is the general form of the nonlinear function. Even though

the nonlinear functional form is implicit for the conditional quantile process, the autoregressive adjustment

is true as long as FAR holds. Consequently, the ARCH process and the conditional quantile process can be

regarded as special cases under some restrictions on the structure of the time-dependence. Usually those

parametric models suffer from a misspecification of the dynamic structure when their underlying assump-

tions are not valid. On the contrary, FAR represents general conditional autoregressive moments for all

higher orders and conditional quantile process by the autoregressive operator which is the reduced form for

all such conditional autoregressive process. Therefore, FAR can be more flexible and improve the modelling

of a time-varying asset return distribution.

Moreover, FAR reasonably explains the finance theories and findings of asset returns. Consider that

the mean of the return obtained from ft is constant and equivalent to that from E f in (4). This implies

that there is no expected excess returns since 〈x,wt〉 = 〈x,wt−1〉 = 0 in (4). Hence, FAR can present the

weak-form efficiency in the ‘Efficient Market Hypothesis’ with time-varying higher order moments such

as the ARCH process. If the mean of the return has a long-memory, the mean would described by the AR

process. Hence, FAR supports ‘behavioural finance’ arguments such as overconfidence, overreaction, and

momentum (gradual adjustment to a new equilibrium) with time-varying higher order moments.

If A is the zero operator, the density function of the intraday return is independently and identically

distributed in the functional space.

ft = E f + εt . (8)

The best predictor is therefore the common expectation of the density function. Since the expected return

is equivalent to the average return obtained from the E f and higher order moments are time constant, this

model implies the ‘Efficient Market Hypothesis’ with time constant higher order moments. We denote this

model by AVE.

If A the identity operator, the density function follows the functional martingale process:

ft = ft−1 + εt . (9)

The last observation is therefore the best predictor. All conditional moments including the expected return

are nonstationary. Hence, any theories and arguments from the finance literature cannot be applicable to

this case. It may be locally observed under the circumstance of “Black Swan” such as the Wall Street Crash

(1929), Black Monday (1987) and the Financial Crisis (2007), since the shock used to be continued or
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diverge in the short term.

To apply FAR in practice, we first need to estimate the empirical intraday density functions at each

point of time t. To this end, we suggest using the kernel density estimation. A standard kernel estimator is

typically defined by

f̂t (x) =
1

mht

m

∑
i=1

K
(

x− rit

ht

)
, t = 1, . . . ,T (10)

where K is a kernel, m is the number of observations and ht is a bandwidth (smoothing parameter or window

width). One practically important issue is the selection of an appropriate kernel and the bandwidth (usually

selected by cross-validation criteria). We follow Silverman (1986) and use a Gaussian kernel with an optimal

bandwidth given by 1.06σ̂tm−1/5 where σ̂t is the sample standard deviation of rit .7 Given the sequence of the

estimated density functions,
(

f̂t
)T

t=1, we estimate E f by the sample average of f̂t such that f̄ = T−1
∑

T
t=1 f̂t .

Then the sequence of the fluctuation (ŵt)
T
t=1 is obtained by ŵt = f̂t − f̄ .

We then estimate the autoregressive operator (A) which can be obtained by utilising the autocovariance

operators of order 0 (C0) and 1 (C1) in infinite dimensions,

Cs = E(wt ⊗wt−s) , s = 0,1,

where ⊗ denotes a tensor product in the infinite dimensional space.8 Using the relationship C1 = AC0, we

obtain an autoregressive operator of order one:

A =C−1
0 C1. (11)

Since autocovariance operators are consistently estimated by Ĉs = (T −1)−1
∑

T
t=2 (ŵt ⊗ ŵt−s) for s = 0,1,

we can consistently estimate the autoregressive operator of order one by Â = Ĉ−1
0 Ĉ1. Using the spectral

representation for a compact and self-adjoint operator C0,

C0 =
∞

∑
`=1

λ` (v`⊗ v`) , (12)

where (λ`,v`) are the pair of eigenvalue and eigenfunction of C0, the inverse of C0 can be easily obtained by

C−1
0 =

∞

∑
`=1

λ
−1
` (v`⊗ v`) . (13)

Since C0 is defined on an infinite dimensional space in principle, there is an ill-posed inverse problem.

In other words, it needs an infinite number of eigenvalues and their corresponding eigenfunctions. To avoid

this ill-posed inverse problem, we project A on a finite subspace of H , define VL as the subspace of H

spanned by the L-eigenfunction, v1, . . . ,vL, and let C0,L = ΠLC0ΠL, where ΠL is the projector on VL.9 Then

7Various other kernels are also available in the literature including Epanechnikov, Bi-weight, Triangular and Rectangular.
8It is defined as (u⊗ v) = 〈v, ·〉u which is equivalent to the outer product uv′ in a finite dimensional vector space.
9In practice, the choice of L is guided by applying a functional principle component analysis (FPCA) and a cross validation

(CV) method. FPCA explains the variation of the fluctuation and CV chooses an optimal dimension L(≤ Lmax) by minimising the
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the inverse of C0 is approximated by

C+
0,L =

L

∑
`=1

λ
−1
` (v`⊗ v`) , (15)

which is defined on VL. Hence, the estimator of the autoregressive operator on the subspaceVL of H is

estimated by

ÂL = Ĉ+
0,LĈ1. (16)

Under some regularity conditions, Park and Qian (2007, 2011, Theorem 5) show that ÂL is a consistent

estimator (See also Bosq, 2000; Cardot et al., 1999, 2003, 2007) and that the forecast errors follow the

normal distribution asymptotically (see Theorem 8 in Park and Qian, 2007):

∥∥ÂL−A
∥∥ a.s.→ 0 and

√
T/L

(
ÂLŵT −AwT

) d−→ N(0,Σ) ,

where L satisfies the condition LT−1/4 logT → 0 requiring that L should not increase too fast with T and Σ

is the covariance operator of εt , E(εt ⊗ εt).

The one-step ahead forecast of the density function is therefore evaluated by

f̂T+1 = f̄ + ÂLŵT . (17)

Figure 1 illustrates the forecasting mechanism of FAR using the equal weighted DJIA portfolio sample.

Panel (a) and (b) present the density forecast and its forecasting error. Panel (c) shows that the fluctuation

gradually disappears over time. Equivalently, Panel (d) shows that the forecasting mechanism of the FAR is

the mean reversion of the density function.

[FIGURE 1 ABOUT HERE]

To reduce the required computing time, ŵt is often approximated by the Fast Fourier Transformation or

the Wavelet transformation. Those approximations reduce the computing time substantially through shrink-

ing the dimension of the function.10 Second, they produce accurate approximations of the tail behaviour so

that the VaR estimates can be improved. After obtaining the forecast of the transformed ŵT+1, the function

is finally inverted to the original one Antoniadisa and Sapatinas (2003); Besse et al. (2000); Lee and Ready

(1991).11

For the purpose of the daily VaR forecast using the intraday density forecast, we first transform the intra-

day density function to the daily density function by deriving the first four moments of the intraday density

following criterion:
Ncv

∑
i=1

∥∥∥ŵL
T−i+1− ŵT−i+1

∥∥∥2
=

Ncv

∑
i=1

ˆ [
ŵL

T−i+1(x)− ŵT−i+1(x)
]2

dx, (14)

where Ncv is the number of the last observations used in CV and ŵL
T−i+1 are the in-sample forecasts of wT−i+1 on L-dimensional

subspace. We set Lmax = 20 through our study and find that the cross-validation procedure given by (14) selects the optimal value
of L ranging between 3 and 10.

10It is usually thirty times faster than the non-transformed case in our study.
11We employ the Fast Fourier Transformation in the empirical evaluation below. The Wavelet transformation provides quantita-

tively similar results, which are available upon request.
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function and then construct the daily density function by the Normal Inverse Gaussian (NIG) distribution

that is one of the most popular distribution families proposed in the literature (Bandorff-Nielsen, 1997) for

describing return distributions. Let µt , vt , st , and kt be, respectively, the mean, variance, skewness, and

kurtosis of the intraday density function. Then we calculate four parameters, (αt ,βt ,γt ,δt), that determine

the shape of the NIG distribution using the following formulas

αt = v−
1
2

t
(
3kt −4s2

t −9
) 1

2

(
kt −

5
3

s2
t −3

)−1

, βt = stv
− 1

2
t

(
kt −

5
3

s2
t −3

)−1

,

γt = µt −3stv
1
2
t
(
3kt −4s2

t −9
)−1

, δt = 3
3
2

{
vt

(
kt −

5
3

s2
t −3

)} 1
2 (

3kt −4s2
t −9

)−1
, (18)

where the kurtosis should satisfy kt > 3+(5/3)s2
t . Furthermore, αt determines the tail heaviness, βt the

asymmetry, γt the location and δt the scale of the distribution. We assume that the intraday returns are

strictly stationary on the tth day and the intraday density function can be consistently approximated by the

following NIG density function:

g,t (x) =
αtδtJ1

(
αt

√
δ 2

t +(x− γt)
2
)

π

√
δ 2

t +(x− γt)
2

exp [δtλt +βt (x− γt)] , (19)

where λt =
√

α2
t −β 2

t and J1 denotes the modified Bessel function of the second kind. Under the strict

stationarity assumption for the intraday return, the density function of the daily return, rt (= ∑
m
i=1 rit), can

be consistently approximated by the NIG density function such that

rt ∼ NIG(αt ,βt ,mγt ,mδt) , (20)

where m is the number of intraday return observations.12 We then finally obtain the daily VaR from the

inverse cumulative density function of NIG distribution:

VaRt (α) = G−1
t (α) , (21)

where G(·) denotes the cumulative density function of the NIG distribution.

In practice, we first calculate the first fourth empirical moments µ̂T+1, v̂T+1, ŝT+1 and k̂T+1 by numerical

integration of the intraday density forecast, f̂T+1. Then, the four moments are utilised to obtain a daily VaR

forecast following the procedures (18)–(21).

In sum, FAR utilises a non-parametric density function, which overcomes many of the limitations of

the parametric approach. Furthermore, imposing an autoregressive structure on the non-parametric density

function improves the defect of the static non-parametric approach. Hence, it is expected that FAR can

12The NIG distribution is close under convolution for independent random variables X and Y

X ∼ NIG(α,β ,µX ,δX ) ,Y ∼ NIG(α,β ,µY ,δY )⇒ X +Y ∼ NIG(α,β ,µX +µY ,δX +δY ) .
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reduce the economic cost and improve accuracy in VaR analysis. Furthermore, it enjoys the rich information

of the high-frequency intraday returns which are helpful in forecasting the daily risk. Therefore, FAR would

be one of the most efficient and accurate models for VaR analysis.

2.2 Alternative Existing Models

We now overview popular VaR models developed by practitioners and academics including HS, FHS,

GARCH models, EVT models, and CAViaR.

HS requires no explicit assumption on the asset return distribution. It non-parametrically estimates the

empirical distribution from observations given the rolling window that generally ranges from 6 months to

two years. Returns in the given window are sorted in ascending order and the α-quantile of interest is given

by the return that leaves α percent of the observation on its left side. The rolling approach however implicitly

assumes that the distribution does not change within each window. Hence, the empirical quantile estimator

is consistent only if the window size goes to infinity under the time-variant condition for the distribution. In

practice, the length of the window must satisfy two contradictory properties: it must be large enough in order

to make statistical inference significant while it must not be too large to avoid the risk of taking observations

outside of the current volatility cluster. VaR estimates based on the HS will underestimate (overestimate)

the true VaR when the underlying state is moving from a low (high) to a high (low) volatility cluster. In

addition, VaR estimates based on HS may present predictable jumps due to the discreteness of the extreme

values.13

In order to mitigate the drawbacks of the HS, FHS was introduced Barone-Adesi et al. (1999, 2002).

FHS first standardises the returns using the estimated conditional mean and standard deviation obtained

from GARCH models.14 Then it applies HS to the filtered returns which are independently and identically

distributed.15 Hence, FHS is a kind of hybrid non-parametric model combining HS with GARCH. By

absorbing the advantages of both HS and GARCH, it improves the performance of VaR forecasting Barone-

Adesi et al. (1999, 2002); Kuester et al. (2006); Pritsker (2001).

GARCH models simultaneously model a time-varying conditional mean and variance. We consider two

GARCH models with differences in the distribution of the error term and the estimation of the first two

conditional moments: the RM and GARCH with Student’s t-distribution. The RM describes the asset return

by the normal distribution. The major criticism of the RM is its symmetric distribution assumption for all

asset returns and the lack of a description for the fat-tails of financial time series. Johansson et al. (1999)

find that the RM significantly underestimates the true risk exposures for small and undiversified portfolios.

Assuming the normal distribution when its true distribution has a fat-tail will also underestimate the risk of

extreme losses (Netftci, 2000). Thus GARCH utilises Student’s t-distribution, possessing a fatter tail than

13For example, let the window size be 180 days and suppose there is an extreme observation today. It is easy to predict that VaR
jumps upward. The reverse effect will appear after 180 days, when the large observation will drop out of the window.

14Even if the underlying distribution is far from Gaussian, a quasi maximum likelihood estimator may be consistent and asymp-
totically normal (Bollerslev and Wooldridge, 1992; Lee and Hansen, 1994; Lumsdaine, 1994).

15Barone-Adesi et al. (1999, 2002) and Pritsker (2001) compute VaR from simulated sample paths using draws from the filtered
returns. Alternatively, our paper computes VaR by applying the HS to the filtered returns without generating sample paths. The
final VaR is computed by VaRt (α) = µt +σtVaR∗t (α), where VaR∗t (α) is the VaR estimate of the filtered returns.
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that of normal distribution.16

EVT models consider probabilities associated with extreme events such as minimum or maximum values

given a block size. It is useful for modelling crashes or stress on financial assets (see Embrechts et al.

(1997) for a comprehensive review of EVT models). However, it tends to overestimate the VaR in a normal

period and faces many challenges including the limited number of extreme data,17 the choice of parameter

estimation and the dynamic specification of the time-dependence on those parameters. Since the distribution

of extreme values is not demonstrated by the central limit theorem, we employ non-standard distribution

models: the generalised extreme value (GEV) distribution and generalised Pareto distribution (GPD). Their

parameters are estimated by the maximum likelihood estimator (MLE) using extreme observations. The

estimation is frequently limited by the small number of extreme observations. Filtered EVT (FEVT) models

are suggested to control for time-varying volatility Diebold et al. (1998); McNeil (2000). Analogous to the

FHS, it first filters the returns by the GARCH estimates, then applies the standard EVT procedure to the

filtered returns. The filtered versions of GEV (FGEV) and GPD (FGPD) are also considered in our paper.

Engle and Manganelli (2004) introduce CAViaR that directly models the evolution of the quantile over

time instead of modelling the evolution of the asset return distributions. The advantage of CAViaR is that it

relaxes the assumption on the underlying return distribution. Thus it reduces the risk from a misspecification

of the parametric distribution.

According to a recent study of alternative VaR strategies Kuester et al. (2006), the FEVT models and

the FHS outperform GARCH and CAViaR. The inadequate performance of GARCH and CAViaR could

be attributed to a misspecification in the time-dependence of the distribution’s parameters and quantiles

as well as the choice of the distribution family. On the other hand, the outperformance of the filtered

approaches associated to the FHS and the FEVT models suggests the advantages of a hybrid approach. In

this context, we expect FAR to enjoy a similar advantage since it models the time-varying density function in

the functional space without any parametric specifications on the distribution and the autoregressive operator

contains the complicated contemporaneous and time-dependent structure on the moments and locations of

the distribution in a reduced form. The models considered are summarised in Table 1.

[TABLE 1 ABOUT HERE]

3 Backtestings

In this section, we summarise the backtesting procedures, which are organised into two general headings:

quantitative and statistical. The former intuitively evaluate the accuracy of the VaR models whilst the latter

provide the formal statistical tests for both unconditional and conditional accuracy.

Before unfolding the backtesting procedures, we preliminarily define a violation of a VaR forecast.

16Recently, the challenge has been how to allow for conditional higher order moments in the GARCH framework, in order to
improve the accuracy of VaR forecasting (Bali et al., 2008).

17Since minimum and maximum values are draws in a fixed block size, i.e., 100 days or 180 days, it requires sufficiently large a
sample of observations to obtain the relevant size of minimum or maximum values. Hence, there is always a trade-off between the
level of extremeness and the number of observations in practice.
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Given the nominal coverage probability, α, a violation is defined by the indicator function

Hs = 1
{

rs < V̂aRs (α)
}
, s = 1, . . . ,N, (22)

where V̂aRs (α) is the VaR forecast given the information set available at s− 1 (Fs−1) with the nominal

coverage probability, α . An accurate VaR forecast thus satisfies

E [Hs|Fs−1] = α, (23)

which implies that Hs is independent of any function of the variables in Fs−1. Hence, accuracy implies

that the conditional binomial process (Hs) on the information set available at s− 1 should follow the IID

Bernoulli distribution (Lemma 1; Christoffersen (1998)):

Hs|Fs−1 ∼ iid Bernoulli(α) , (24)

where Var (Hs|Fs−1) = α (1−α).

3.1 Quantitative Evaluations

The empirical conditional coverage probability is calculated by the sample average of the N violations of Hs,

that is α̂ = N−1
∑

N
s=1 Hs which is the consistent estimator of the conditional coverage probability under the

true forecasting model assumption. Hence, the regulator prefers a VaR model with a empirical conditional

coverage probability that is closest to its nominal value. Since the empirical conditional coverage probability

is random, its significance needs to be tested through formal statistical tests which will be introduced in the

next subsection.

The Basel penalty zone is found in Basel Committee on Banking and Supervision (1996). It describes

the strength of an internal model through the test of failure rate, which records the number of daily violations

of the 99 percent VaR in the previous 250 business days. One may expect, on average, 2.5 violations out of

the previous 250 VaR forecasts under the correct forecasting model. The Basel Committee rules that up to

four violations are acceptable for banks and defines the range as a “Green” zone. If the number of violations

is five or more, the banks fall into a “Yellow” (5–9) or “Red” (10+) zone, where the penalty is cumulatively

imposed on the bank by the multiplicative factor (κ) from 3 to 4.18 It is used for calculating the market risk

capital requirement. If a bank falls into “Red” zone, the penalty is automatically generated. Whereas, if a

bank is in “Yellow”, the supervisor will decide the penalty depending on the reason for the violation. Jorion

(2006, p. 149) summarises the categories for the reasons suggested by the Basel Committee.19

The MRCR (market risk capital requirement) originated from the Basel II Accord. According to the

applications of the Basel II Accord, it requires the minimum capital requirement for market risk as well as

credit risk and operating risk. The Basel II Accord provides two approaches to measure the MRCR: (i) Stan-

18The multiplicative factor corresponds to the number of violation: 0–4 (3), 5 (3.4), 6 (3.5), 7 (3.65), 8 (3.75), 9 (3.85) and 10
(4), respectively.

19There are four categories: (i) Basic integrity of the model, (ii) Model accuracy could be improved, (iii) Intraday trading, (iv)
Bad luck.
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dardised approach and (ii) Internal models approach. We choose the second approach to evaluate the VaR

forecast. Providing that a bank satisfies the qualitative requirements (the bank has a sound risk management

system and an independent risk-control unit as well as external audits), the MRCR is summarised by the

following four factors: (i) quantitative parameters, (ii) treatment of correlations, (iii) market risk charge, and

(iv) plus factor.20 The MRCR thus can be formulated by

MRCRs = max

(
κ

1
60

60

∑
i=1

VaRs−i (α) ,VaRs−1 (α)

)
+SRCs, s = 251, . . . ,N, (25)

where SRC is the additional capital charge for the specific risk Basel Committee on Banking and Supervision

(1996, 2004) but it is ignored in our evaluation, since it is assumed to be a common value applied to all VaR

models. κ is the Basel penalty factor. A model carrying the minimum MRCR is preferred by the regulator.

Predictive quantile loss evaluates a VaR forecast in terms of economic cost. We employ the predictive

quantile loss using the “check” function of Koenker and Bassett (1978) which can be regarded as a “pre-

dictive” quasi-likelihood (Bertail et al., 2004; Komunjer, 2004). The expected loss of VaR for a given α

is

Qs (α) = E
[
(α−Hs)

(
rs−V̂aRs (α)

)]
, (26)

which can provide the measure of the lack-of-fit for a quantile model and be interpreted as the economic cost

to carry a VaR model. The expected check function, Q(α), is estimated from the sequence of N violation

indicates (Hs):

Q̂(α) =
1
N

N

∑
s=1

(α−Hs)
(

rs−V̂aRs (α)
)
. (27)

A model providing the minimum value of Q̂(α) is preferable from the regulator’s point of view.

3.2 Statistical Evaluations

The unconditional coverage test was first developed by Kupiec (1995). If we assume that VaR forecasts are

independent over time, the violations of a VaR forecast can be regarded as the realisation of an independent

binomial random variable whose probability of a realised return’s exceeding the corresponding VaR fore-

cast is equal to the nominal coverage probability, α . Therefore, accurate VaR forecasts should satisfy the

requirement that their empirical coverage probability equals the nominal coverage probability. The test thus

describes the null and alternative hypotheses by

H0 : E [Hs] = α against H1 : E [Hs] 6= α. (28)

Under the null hypothesis, (24) can be employed for constructing the likelihood ratio test statistic

LRuc = 2 [`(α̂;H1, . . . ,HN)− `(α;H1, . . . ,HN)]
d∼ χ

2
1 , (29)

20See Basel Committee on Banking and Supervision (1996, 2004) for details and Jorion (2006) for a compact summary.
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where `(·) denotes the log-likelihood for the Bernoulli distribution such that

`(α̂;H1, . . . ,HN) = N1 log α̂ +N0 log(1− α̂) , (30)

`(α;H1, . . . ,HN) = N1 logα +N0 log(1−α) . (31)

The MLE of α̂ is the ratio of the number of violation, N1, to the total number of observation, N0 +N1 = N,

that is, α̂ = N1/(N0 +N1). Kupiec (1995) however reports that this test has a low power to distinguish

among alternative hypotheses, even in sufficiently large samples. Hence, the regulator would have the low

confidence in the bank’s VaR report when its internal model can not be rejected by this test.

In the presence of time-dependence, volatility clustering and persistence are often found in financial time

series. Therefore, the conditional accuracy of VaR forecasts is highly important. If a VaR model ignores

such underlying state, its VaR estimates may have an incorrect conditional coverage probability whilst its

unconditional coverage probability is still correct.21 The regulator thus requires that the VaR model exhibit

an accurate coverage probability regardless of the underlying state. In order to test the conditional accuracy

of a VaR forecast, Christoffersen (1998) has developed the conditional coverage test by combining the

unconditional coverage test and the independence test: resulting log-likelihood ratio test statistic is the

summation of two log likelihood ratio test statistics:

LRcc = LRuc +LRind
d∼ χ

2
2 , (32)

where LRuc and LRinc are the log likelihood ratio test statistics of the unconditional coverage test and the

independence test, respectively. The independence test utilises the sequence of violation indicates (Hs) as a

binary first-order Markov chain with transition probability matrix,

Π =

(
π00 π01

π10 π11

)
, (33)

where πi j = P(Hs = j|Hs−1 = i) for i, j = 0,1. Under the null hypothesis of independence, the likelihood

ratio test statistic is given by

LRind = 2
[
`
(
Π̂;H2, . . . ,HN |H1

)
− `(π̂1;H2, . . . ,HN |H1)

] d∼ χ
2
1 . (34)

The first joint log likelihood conditional on the first observation is

`(Π;H2, . . . ,HN |H1) = N00 logπ00 +N01 logπ01 +N10 logπ11 +N11 logπ11, (35)

where Ni j denotes the number of transitions from state i to j, Ni j = ∑
N
s=2 1(Hs = j|Hs−1 = i), and the MLEs

of π01 and π11 under the alternative hypothesis are π̂01 = N01 (N00 +N01)
−1 and π̂11 = N11 (N10 +N11)

−1,

respectively. Under the null hypothesis of independence, we have π01 = π11 ≡ π1, from which we obtain the

21An HS ignores the time-dependent structure of the underlying probability law of financial time series. It is frequently rejected
for the independence test whilst it provides an accurate unconditional coverage by the unconditional coverage test.
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second conditional log likelihood as follows:

`(π1;H2, . . . ,HN |H1) = (N00 +N10) log(1−π1)+(N01 +N11) logπ1, (36)

where the MLE of π1 is π̂1 = (N01 +N11)(N00 +N10 +N01 +N11)
−1. Hence, the LR test statistic in (32) is

alternatively expressed by combining (29) and (34):

LRcc = 2
[
`
(
Π̂;H2, . . . ,HN |H1

)
− `(α;H2, . . . ,HN |H1)

] d∼ χ
2
2 , (37)

where the second log likelihood conditional on the first observation is

`(α;H2, . . . ,HN |H1) = (N00 +N10) log(1−α)+(N01 +N11) logα. (38)

Therefore, the regulator requires that the accuracy of VaR forecasts reported by a bank’s internal model

should be evaluated by the conditional coverage test rather than the single unconditional coverage test or

the independence test. If the VaR model is rejected by the conditional coverage test, the regulator would

recommend that the bank improve its VaR model to eliminate the time-dependent coverage ability in VaR

forecasts. The proposed test however has a limitation, since it allows only the time-dependence of the first

lag-order in the sequence of violation indicators (Gaglianone et al., 2009). The testing procedure may be

extended by allowing more lag orders.

The dynamic quantile test (Engle and Manganelli, 2004) is a general extension of the conditional cover-

age test allowing for more time-dependent information of (Hs)
N
s=1. It regresses Hs on some carefully selected

explanatory variables in Fs−1 such that

Hs = α0 +
p

∑
i=1

βiHs−i +βp+1V̂aRs (α)+us, s = p+1, . . . ,N. (39)

Under the null hypothesis, the explanatory variables should have no power on Hs, that is

H0 : α0 = α and βi = 0 for i = 1, . . . , p+1. (40)

By subtracting α from both sides of (39), we have

(Hs−α) = (α0−α)+
p

∑
i=1

βiHs−i +βp+1V̂aRs (α)+us, s = p+1, . . . ,N. (41)

The simple vector notation of (41) is given by

ys = Zsβ +us, s = p+1, . . . ,N, (42)

where ys = Hs−α , Zs =
(

1,Hs−1, . . . ,Hs−p,V̂aRs (α)
)′

and β = (α0−α,β1, . . . ,βp+1). We can therefore

express the null hypothesis in (40) as

H0 : β = 0. (43)
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Under the null hypothesis, the least squares estimator converges to the normal distribution such that

β̂ =
(
Z′Z
)−1 Z′y =

(
Z′Z
)−1 Z′ (H−αι)

d∼ N
(

0,
(
Z′Z
)−1

α (1−α)
)
. (44)

Then we can deduce the test statistics from Engle and Manganelli (2004) by

DQ =
β̂
′
Z′Zβ̂

α (1−α)

d∼ χ
2
p+2. (45)

The Monte Carlo simulation study by Berkowitz et al. (2011) shows that the dynamic quantile test appears

to be the best backtest for a 99% VaR whilst other tests generally have much lower power against incorrect

VaR models.22

In summary, regulators require banks to evaluate the accuracy of VaR forecasts by the bank’s internal

models using statistical tests. There are two popular tests: the conditional coverage test Christoffersen

(1998) and the dynamic quantile tests (Engle and Manganelli, 2004). The VaR models in our study are

therefore mainly evaluated by these two conditional tests. Since VaR forecasts are generally evaluated in

very small coverage probability (1%), testing power is usually less than those for the central statistics such

as mean or variance. Hence it would be undesirable to evaluate the VaR model at a lower significance

level (e.g., 1%). The regulator should place more confidence in VaR models not rejected by the conditional

coverage test at a more restrictive significance level.

4 Data

We choose the 30 companies of the DJIA as the sample of this study. This Wall Street benchmark index

contains the 30 largest stocks listed in the US market. These corporations are deemed to be too big to

fail even during the financial crisis. Among these companies, three of them were rescued by the U.S.

government in 2008.23 Understanding the risk profiles of these 30 companies is essential for monitoring

and safeguarding the financial system. Furthermore, unlike small companies, these companies are actively

traded in a trading section which generates enormous amount of information. It is an interesting empirical

question to ask whether the financial market revealed any insight regarding these company’s risks during the

intraday trading.

The list of components changes annually, and we choose the list in year 2005, because this year is in the

middle of our whole sample period, which is from 2000 to 2008. Intraday transaction data are collected from

Trade and Quote (TAQ) dataset. Following traditional studies which deal with intraday data, such as Lee

and Ready (1991) and Hvidkjaer (2006), a filtering procedure has been applied to exclude any data likely to

22Berkowitz et al. (2011) make the criticisism that estimating the autoregression (42) by ordinary least squares can not completely
treat heteroscedasticity for valid inference since the sequence of violations is binary. They instead recommend estimating a logit
model by assuming that the error term us has a logistic distribution and then testing the null hypothesis by a likelihood ratio test.
Another possibility is a duration based approach developed by ? and further by Berkowitz et al. (2011).

23Bailouts for American International Group, Inc. and Citi group Inc. were announced by the Federal Reserve Bank’s Board
of Governors. Though the case of General Motors Corporation is not technically a bailout, a bridge loan was given to the auto
manufacturers by the U.S. government in 2008, which is referred to by most as a bailout.
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be erroneous. Specifically, all the trades (quotes) with condition codes, A, C, D, G, L, N, O, R, X, Z, 8, 9 (4,

5, 7–9, 11, 13–17, 19, 20) are removed from the sample. The trades with a correction code which is greater

than 2 are also removed from the sample.24 Quotes are excluded if ask is equal or less than bid, or bid–ask

spread is above 75% of mid-quote, or ask (bid) is more than double or less than half of the previous ask.

Only trades reported from 9:30 AM to 4:00 PM are included. According to Lee and Ready (1991), trades

happen five seconds earlier than reported time. Therefore, trade times are calculated as the reported time

minus 5 seconds. Trades are deleted if the trade price is more than double or less than half of the previous

trade. After filtering data, from the opening time 9:30 AM of the exchange, total trading volume, close

trade and quote prices of every 5 minutes have been calculated based on the intraday transaction data. Close

trade and quote prices in intervals are defined as the price of the last trade in intervals and corresponding

quote price when trade happens. If there is no trade happening in the interval, the closest trade and quote

prices of the previous interval will be used as the one for current interval. In addition, a portfolio return

is constructed by the equal weight of the 30 company’s returns. It is used for the proxy of the Dow Jones

Industrial Average index. A detailed data description is provided by Table 2.

[TABLE 2 ABOUT HERE]

Table 3 presents the descriptive statistics for the intraday returns and the daily returns for the 30 com-

panies and their equally weighted portfolio. In Panel A, the statistics for the intraday return are obtained by

averaging the intraday statistics from 2000 to 2008. There are 78 five-minute-interval return observations

in each day. The mean and median are very close to zero which is consistent with the previous market

microstructure literature. The maximum return (0.92%) is observed in Alcoa Inc. and the minimum return

(-0.94%) is observed in Intel Corporation. These statistics suggest the sudden increase and decrease of 1%

in a five minute interval. The standard deviation is also biggest in Intel Corporation. The asymmetry is

insignificant since skewness is small, close to zero. On the contrary, the kurtosis is significantly larger than

that of the normal distribution: this describes the typical fat-tail of a financial time series.

In Panel B, the statistics for the daily return are obtained from 2,263 daily observations whilst those for

Hewlett-Packard Company, AT&T, and Verizon Communication Inc. are from 1,678, 2,256 and 2,173 ob-

servations, respectively. The mean returns are distributed around zero. The means of American International

Group, Inc. (-0.17%) and Citigroup (-0.08%) are relatively smaller than the others which is not a surprise

given that they needed rescues by the government in 2008. The maximums (minimums) and standard devia-

tions of those companies are also relatively much larger (smaller) than others. The asymmetry of the return

distribution is generally not serious, whilst AIG (-6.49) and The Procter & Gamble Company (-5.17) are

very negatively skewed. A fat-tail is also strongly observed for all companies. In particular, the kurtosis of

AIG (158.5), Citigroup (47.82) and the Procter & Gamble Company (120.3) are significantly bigger than

the others. The return of the portfolio shows the average property in both intraday and daily return except

for the standard deviation. The standard deviation of the portfolio is least among the returns which reflects

the diversification effect of the equal weighted portfolio. Overall, the returns present the typical nature of

24For the definitions of the codes, refer to the TAQ manual.
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financial time series and some extreme statistics are observed especially for the bailout companies in the

2008 global crisis.

[TABLE 3 ABOUT HERE]

5 Evaluations

We evaluate the forecasting performance with a simulated sample, 30 individual stocks and their equal

weighted portfolio. First, we evaluate the density forecasting of functional models such as FAR, AVE

and LAST based on divergence criteria. This evaluation investigates which functional model is the best

predictor of the density. Second, we evaluate the forecasting precision of the VaR models through a Monte

Carlo simulation study in which we generate a sample based on a specification from empirical findings and

we evaluate the forecasting precision by comparing a VaR forecast with a true VaR. Third, we evaluate the

out-of-sample performance of VaR forecasting for alternative VaR models with 30 individual stocks and

the portfolio. In the first part, the evaluations are performed for long and short positions with a window

size of 250 business days, that is, we investigate the left-tail and the right-tail extreme events of the return

distribution. Hence, this provides VaR forecasting evaluations for buying and selling activities. In the second

part, we provide the effect of a longer window size on the performance of VaR forecasting, using for a 500

(business days) window size. These evaluations are also performed for long and short positions. Hence, it

will better support our empirical evaluation results at the end.

5.1 The Density Forecasting of Alternative Functional Models

We first evaluate the density forecasting of alternative functional models; FAR, AVE and LAST—see (8)

and (9). This evaluation demonstrates which functional model is the best predictor of the intraday density

function using 30 individual stocks and portfolio. To this end we employ divergence criteria that measure the

distance between the forecasted and the true density function; namely, the Hilbert norm (DH), the uniform

norm (DU) and the generalised entropy (DE). DH and DU are given by

DH
(

f̂ , f
)
=

´ (
f̂ (x)− f (x)

)2
dx´

f̂ (x)2 dx+
´

f (x)2 dx
and DU

(
f̂ , f
)
=

supx

∣∣ f̂t (x)− ft (x)
∣∣

supx ft (x)
, (46)

where f̂ denotes the density forecast and f the true density. Following Ullah (1996), we define DE by

DE
(

f̂ , f
)
=

ˆ
f (x)g

(
f̂ (x)
f (x)

)
dx, (47)

where g(y) = (γ−1)−1 (yγ −1) with γ > 0 and γ 6= 1. We follow Park and Qian (2007) and set γ = 1/2.

If g is the natural log, this becomes the Kullback–Liebler divergence measure. All three quantities are non-

negative and give a zero value if f̂t = ft and so we may call them global errors. DH is useful for evaluating

the goodness-of-fit of the model, DU is informative for comparing the closeness of the function shape, and

DE assesses the difference in information content between the forecast and the true density function.
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For the 30 stocks and the portfolio, we apply the rolling one-step-ahead forecast of the intraday density

function based on the 250 window size from 03/01/2001 to 31/12/2008 for three functional models. In

Table 4, the mean and median divergence measures are calculated based on the 2,011 daily forecasts (except

for Hewlett-Packard, AT&T and Verizon Communication Inc., which are calculated using 1,416, 2,004 and

1,885 forecasts, respectively). Panel A presents the average divergence values of 30 stocks and Panel B

presents the divergence value of the portfolio. The FAR has the minimum values for the three divergence

criteria in mean and median in Panels A and B. The LAST has smaller values than the AVE for the three

divergence measures in mean and median. The results show that FAR outperforms other functional models

in forecasting the intraday density function, demonstrating that FAR is the best predictor of the intraday

density function in our sample.

[TABLE 4 ABOUT HERE]

5.2 The Precision of VaR Forecasting

In this section, we evaluate the precision of the VaR forecasting by comparing it with the true VaR via Monte

Carlo simulation. To this end, we make the following assumptions on the data generating process:

Assumption 1. Intraday returns are independently and identically distributed.

Assumption 2. The distribution of intraday returns is determined by the first four moments such that it is a

member of NIG family.

Assumption 3. The time-dependence of the first four moments of the intraday density function follows a

stationary vector autoregressive process of lag order 1.

Assumption 4. The daily return is the sum of the intraday returns and follows a NIG distribution.

First, we construct the time-varying four moments of the intraday density function by a stationary

VAR(1) process

mt −m = Φ(mt−1−m)+ξ t , t = 1, . . . ,T, (48)

where mt = (µt ,vt ,st ,kt)
′, m= (µ,v,s,k)′ and Φ is 4×4 autoregressive coefficient matrix satisfying

∥∥Φ
k
∥∥<

1 for any k ≥ 1. ξ t = (ξ1t ,ξ2t ,ξ3t ,ξ4t)
′ is independently and normally distributed with zero mean and

covariance such that

Σ =


σ2

1 0 0 0

0 σ2
2 0 0

0 0 σ2
3 0

0 0 0 σ2
4

 .
In practice, we generate the sample by

mt = c+Φmt−1 +ξ t , (49)

where c= (I−Φ)m and I−Φ is invertible. Furthermore, the moments must satisfy the following conditions
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(see the definition of NIG distribution):

vt > 0 and kt >
5
3

s2
t . (50)

Let m0 = 0 and generate the first observation by

m1 = c+ξ 1. (51)

If the sample does not satisfy (50), then we regenerate it until it does. Other samples are sequentially

generated by (49) in the same manner. We discard the first 100 observations to reduce the effect of the initial

values.

Next, we calculate the four parameters (αt ,βt ,γt ,δt)
′, that determine the NIG distribution, using the four

moments (µt ,vt ,st ,kt)
′. Then we draw an intraday return from the NIG distribution and let Xt := (rti)

m
i=1

and X := (Xt)
T+N
t=1 (See (3) for Xt and X). Under Assumptions 1 and 4, an NIG distribution for a daily return

(rt = ∑
m
i=1 rit) is determined by four parameters (αt ,βt ,mγt ,mδt)

′. Hence, we can calculate a true daily VaR

for (1−α)% from an inverse cumulative density function corresponding to α probability, G−1
t (α).

We iterate the experiment 5,000 times and evaluate the precision of the VaR forecast for FAR and

alternative models by comparing the VaR forecast and the true VaR. We employ Bias, Root Mean Square

Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Percentage

Mean Absolute Deviation ( PMAD) as precision measures.25

The simulation uses a 250 window size (T = 250) and one-step ahead forecast (N = 1). We choose

parameter values for m, Φ and Σ by estimating (49) for the 30 stocks and the portfolio. Out of 31 estimations,

we focus on three representative cases. We first consider the aggregate information of 30 stocks and select

the portfolio that presents an equal weight composite of the 30 stocks, and obtain the following specifications

for m, Φ and Σ:

m =


−0.0003

0.0212

0.1666

9.4345

 ,Φ =


−0.0495 0.0075 0.0000 0.0000

−0.3850 0.5546 0.0019 −0.0006

−2.7238 −0.3703 −0.0623 0.0011

34.0111 12.2691 −0.3776 −0.0027

 ,

Σ =


0.0003 0 0 0

0 0.0023 0 0

0 0 3.2681 0

0 0 0 88.6670

 , (52)

where I−Φ is invertible and the maximum eigenvalue of Φ is 0.5337. Hence, this specification guarantees

25Bias = ∑
N
t=1[Ĝ−1

t (α)−G−1
t (α)]

N , RMSE =

√
Bias2 +Var

(
Ĝ−1

t (α)
)

, MAE =
∑

N
t=1|Ĝ−1

t (α)−G−1
t (α)|

N , MAPE =
∑

N
t=1

∣∣∣∣ Ĝ−1
t (α)−G−1

t (α)

G−1
t (α)

∣∣∣∣
N and

PMAD =
∑

N
t=1|Ĝ−1

t (α)−Ĝ−1
t (α)|

∑
N
t=1|G−1

t (α)| .
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the stationarity of the VAR(1) process.

Second, we consider a medium case for 30 stocks. Mean or median values of parameters are considered

but the mean is severely affected by the outliers of the bailout companies such as AIG, Citi and GM. Hence,

we select the median values of m, Φ and Σ out of 30 estimations such that

m =


−0.0002

0.0581

0.1117

8.6073

 ,Φ =


−0.0282 0.0027 0.0003 −0.0001

−0.2797 0.3434 0.0027 −0.0016

−2.1938 0.1015 0.0185 −0.0015

5.2755 1.2691 −0.0042 0.0286

 ,

Σ =


0.0007 0 0 0

0 0.0218 0 0

0 0 2.6799 0

0 0 0 75.7837

 , (53)

where the maximum eigenvalue of Φ is 0.3355, guaranteeing the stationarity of the VAR(1) process.

Third, we consider the most persistent estimation case among 30 stocks. We search for a case presenting

the maximum eigenvalue of Φ and finally select the case of Exxon Mobil Corporation where the values of

m, Φ and Σ are given by

m =


0.0004

0.0420

0.1203

7.8954

 ,Φ =


−0.1627 0.0260 0.0009 0.0000

−0.4836 0.6382 0.0022 −0.0009

−4.3404 −0.0316 0.0354 −0.0011

4.8516 2.8674 −0.1539 0.0427

 ,

Σ =


0.0005 0 0 0

0 0.0046 0 0

0 0 2.1028 0

0 0 0 51.0363

 , (54)

where the maximum eigenvalue of Φ is 0.6165 which also guarantees the stationarity of the VAR(1) process.

Table 5 presents the evaluation results for alternative measures. Ten models are considered for each

experiment and alternative positions (short and long) are taken into account for each model. For all ex-

periments and measures, the results strongly conclude that FAR forecasts the true VaR most precisely. It

provides the smallest values in the three experiments. RM, GARCH and CAViaR are less accurate than FAR

while they are slightly more accurate than HS and FHS. The EVT models perform the worst in terms of

precision. Their values are much greater than those of the other models. All models overestimate a true VaR

and the biases are more or less symmetric for both positions. MAPE is quite sensitive to the extreme cases.

The values of the long position are much greater than those of the short position. This implies that there

are extreme negative realisations leading to the large forecasting error. Therefore, Monte Carlo simulation
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study provides the evidence that FAR can precisely estimate and forecast a true VaR.

[TABLE 5 ABOUT HERE]

5.3 The Out-of-sample Performance of VaR Forecasting

Given the success with the forecasting precision of FAR compared with the true intraday density function

and VaR, we evaluate the empirical VaR forecasting performance of FAR compared with alternative models.

We apply various backtestings to the performance evaluation, since a true VaR is unobservable in practice.

To this end, we apply the rolling-forecast of the daily VaR based on a 250 window size from 03/01/2001

to 31/12/2008 to the 30 stocks and the equal weighted portfolio. We also consider the evaluations of the

alternative positions (long and short). The quantitative measures and the test statistics for the 30 stocks and

the portfolio are calculated based on the 2,011 daily forecasts (except those for Hewlett-Packard, AT&T and

Verizon Communication Inc., which are calculated using 1,416, 2,004 and 1,885 forecasts, respectively).

5.3.1 Long Position

We first evaluate the backtestings for the long position with 250 window size and the results are summarised

in Table 6. Panel A reports the quantitative backtestings and Panel B the statistical backtesting for the 30

stocks and the portfolio. In Panel A, the rows of (A) empirical coverage probability, (C) MRCR and (D)

predictive quantile loss present the average quantitative values of the 30 stocks. The (B) Basel penalty zone

counts the number of stocks falling into the zone determined by the average violation number for the 99

percent VaR in the previous 250 business days. The (A) empirical coverage probability and the (B) Basel

penalty zone generally evaluate the coverage ability of the model. Furthermore, the (C) MRCR and the (D)

predictive quantile loss evaluate the economic cost for employing the model. The figures of (E)–(I) count the

number of stocks that are rejected at the 5% significance level for each test.26 Panel B presents the evaluation

results for the portfolio. The row (A), (C) and (D) present the same figures as those in Panel A whilst the

row (B) presents the penalty zone based on the average number of daily violations of the 99 percent VaR in

the previous 250 business days. Furthermore, (E)–(I) present the test statistics and * , **, and *** denote the

rejection of the null hypothesis for each test at, respectively, the 10%, 5% and 1% significance level. Those

five test statistics employed in our evaluation are described in Section 3.2.

The quantitative backtestings of Panel A provide the following findings. For the (A) empirical cov-

erage probability, FAR (1.07%) is closest to the 1% nominal probability. The FHS (1.10%) and the HS

(1.19%) slightly underestimate the VaR. The GARCH models (1.60%–1.82%) considerably underestimate

VaR whilst the EVT models (0.49%–0.55%) greatly overestimate VaR as expected. CAViaR (2.83%) shows

the worst coverage ability by seriously underestimating the VaR. Overall, the hybrid non-parametric models

demonstrate powerful coverage ability. For the (B) Basel penalty zone, the non-parametric models and the

EVT models achieve the “Green” zone for all stocks. The non-parametric models obtain the “Green” zone

due to their good coverage probability. The EVT models are however classified in the same zone due to their

considerable overestimation of VaR. Since the Basel penalty zone is only concerned with underestimations

26We have obtained quantitatively similar results for all cases using the 10% significance level.
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(violation) of VaR, the overestimation receives better scores by the Basel penalty rule given their prudential

principles. The GARCH models fail to achieve the “Green” zone for some stocks because of their under-

estimations of VaR. GARCH achieves the “Green” zone for 20 stocks whilst the RM achieves it for seven

stocks. The worst case, CAViaR, fails to obtain the “Green” zone for any of stocks. There are 3 and 27

stocks falling into the “Red” and the “Yellow” zone, respectively.

For the (C) MRCR, the GARCH models (39.59%–39.78%) demand the smallest capital requirement.

FAR (40.80%) requires a similar level of capital whilst FHS (45.29%%) and HS (45.28%) demand much

more capital. The capital requirement of adopting CAViaR (47.43%) is quite high although the highest level

is found in the EVT models (58.09%–60.75%). For the (D) predictive quantile loss, FAR (6.76%) faces

the smallest loss. The losses of GARCH (6.80%), FHS (6.87%) and RM (6.89%) are more or less similar

to those of FAR. On the other hand, HS (7.74%), the EVT models (7.61%–8.21%) and CAViaR (8.25%)

require banks to endure big losses.27

For the (E) unconditional coverage test, FHS is not rejected for any of stocks. HS and FAR are rejected

for 3 and 7 stocks, respectively. Other models are rejected for over 20 stocks. These results imply that the

hybrid models utilising a non-parametric distribution have statistically significant coverage ability whilst

others have very poor ability. For the (F) independence test, the coverage ability of HS and CAViaR is

statistically more dependent on the underlying states than other models. HS and CAViaR are rejected for 9

and 10 stocks. Hence, the violations of VaR forecasts are considerably time dependent on the underlying

state. Regulators would therefore prefer the models allowing for a time-varying distribution which would

prevent the violations from being abnormally clustered. The FAR would be the best candidate among such

models since it is rejected for only 2 stocks. RM is rejected for 3 stocks, GARCH, FHS, and unfiltered EVT

models are rejected for 4 stocks and the FEVT models are rejected for 6 stocks.

From the above two tests, the hybrid non-parametric models achieve statistically powerful coverage

ability that is independent of the underlying state.28 Other models fail to pass the two tests jointly. These

findings are further supported by the (G) conditional coverage test. The hybrid non-parametric models are

rejected for 4 or fewer stocks whilst the others are rejected for 9 or more stocks (ranging from HS: 9 stocks

to CAViaR: 30 stocks). There are alternative types of conditional tests such as the (H) dynamic quantile test

1 and the (I) dynamic quantile test 2. The (H) dynamic quantile test 1 includes the past violations in the

past information set and the (I) dynamic quantile test 2 additionally includes the past VaR forecast in the

past information set. In the (H) dynamic quantile test 1, the hybrid non-parametric models and the FEVT

models are rejected for a relatively small number of stocks whilst the others are rejected for over the half of

the stocks. Especially, GARCH (22 stocks), HS (24 stocks), RM (28 stocks) and CAViaR (30 stocks) are

rejected for over 70% of the 30 stocks. These results resemble the (I) dynamic quantile test 2. Overall, the

27For example, suppose that a bank manages $1 bn. and operates an internal VaR model. Then the CFO will report the economic
cost using the MRCR and the predictive quantile loss every day. If the bank operates the EVT models, they should allocate $580.9
mm.–$607.5 mm. against the maximum loss for 10-day or endure $76.1 mm.–$82.1 mm. of loss every day. Then the CFO will
decide to replace the EVT models with FAR, since the EVT models are too expensive to operate. The FAR reduces the capital
requirement to $408 mm. and the loss to $67.6 mm. Therefore, FAR cuts down the capital requirement by $172.9 mm.–$199.5
mm. and the loss by $35.3 mm.–$41.3 mm.

28This means that the models provide the closest coverage probability to the 1% nominal probability regardless of the underlying
state such as business cycle or volatility clustering.
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hybrid non-parametric models statistically perform better than other models.

Panel B presents the evaluation results for the portfolio. The (A) empirical coverage probabilities of

non-parametric models (0.80%–1.24%) are relatively closest to the 1% nominal probability. This find-

ing confirms that the models utilising the non-parametric distribution have stronger coverage ability than

those of the models utilising the parametric distribution. The GARCH models (1.79%–1.84%) and CAViaR

(2.09%) considerably underestimate VaR whilst the EVT models (0.45%–0.55%) greatly overestimate it.

These lead to that the adoption of the GARCH models and the CAViaR will be classified as the “Yellow”

penalty zone. For the (C) MRCR, the GARCH models (24.64%–25%) demand the smallest capital require-

ments and the non-parametric models (25.89%–28.84%) and the CAViaR (26.66%) require slightly more

capital. Banks would be required to pay an expensive cost to adopt the EVT models (35.47%–35.56%).

The (D) predictive quantile loss of FAR and the GARCH models (4.38–4.44%) are smallest whilst the EVT

models (4.98%–5.18%) face the biggest loss. Those of the FHS, HS and CAViaR (4.48%–4.61%) are in the

intermediate level. These results confirm that the non-parametric models are superior to the others in terms

of their coverage ability and economic cost. The GARCH models and CAViaR reduce the economic cost

well whilst they fail to increase the coverage ability. The EVT models present very poor performance in

both coverage ability and economic cost analysis. Moreover, the statistical evaluations from (E)–(I) show

that the non-parametric models are not rejected for all the tests whilst CAViaR is rejected for all of them.

The GARCH models also fail for all the tests except for the (F) independence test. The FEVT models are

not rejected for all the conditional tests at the weak significance level whilst the unfiltered EVT models

are rejected for all the tests except for the (F) independence test. These results further confirm that the

non-parametric models have statistically significant and robust coverage ability that is independent of the

underlying state.

[TABLE 6 ABOUT HERE]

5.3.2 Short Position

The results for the short position, summarised in Table 7, are generally consistent with those for the long

position. The results for the quantitative backtestings in Panel A provide the following. For the (A) empir-

ical coverage probability, the hybrid non-parametric models (0.96%–1.03%) are closest to the 1% nominal

probability. FAR (0.96%) slightly overestimates the VaR whilst FHS (1.03%) slightly underestimates it. HS

(1.20%) underestimates even more the VaR. The GARCH models (1.46%–1.66%) underestimate VaR whilst

the EVT models (0.48%–0.56%) considerably overestimate it. CAViaR (2.31%) seriously underestimates

the VaR. For the (B) Basel penalty zone, FHS achieves the “Green” zone for all stocks. FAR and HS achieve

the “Green” zone for 29 stocks and the “Yellow” zone for 1 stock. The EVT models obtain “Green” zone

for 30 stocks, since the models much overestimate VaR. The GARCH models fail to achieve the “Green”

zone for some stocks because of their severe underestimations of VaR. GARCH achieves the “Green” zone

for 21 stocks whilst RM achieves it for 14 stocks. The worst case is CAViaR, which obtains the “Green”

zone for only one stock and the “Yellow” zone for 28 stocks. For the (C) MRCR, the GARCH models re-

quire the smallest capital (38.64%–39.04%) and the hybrid non-parametric models require a bit more capital

26



(41.20%–42.88%). The EVT models (52.53%–56.51%) are the most expensive models for banks to adopt

as their internal VaR models. The capital requirements for HS (45.13%) and CAViaR (44.13%) are some-

what higher. For the (D) predictive quantile loss, FAR (5.93%) has the smallest loss followed by GARCH

(5.97%), FHS (6.05%) and RM (6.09%). On the other hand, HS (7.06%), the EVT models (6.60%–7.44%),

and CAViaR (7.10%) require banks to endure big losses. The results of the quantitative backtestings show

that the hybrid non-parametric models obtain a powerful coverage ability at small economic cost. The

GARCH models and HS fail to obtain a strong coverage ability and a small economic cost jointly.

For the (E) unconditional coverage test, FHS is not rejected for any of the stocks. HS and FAR are

rejected for three and five stocks, respectively. Other models are rejected for over 20 stocks except for

GARCH, rejected for 14 stocks. For the (F) independence test, overall, the coverage ability of VaR forecasts

are independent of the underlying state. The hybrid non-parametric models and the GARCH models are

rejected for one company at most. Other models are rejected for slightly more stocks but less than four

stocks. These results imply that the non-parametric models have statistically powerful coverage ability that

is more or less statistically robust to the underlying states but other models fail to pass the two tests jointly.

These findings are further confirmed in the (G) conditional coverage test. FHS is rejected for the none of

30 stocks and FAR is rejected for four stocks. HS is rejected for seven stocks, which is relatively small

compared with other models (ranging from GARCH: 12 stocks to CAViaR: 30 stocks). Moreover, for the

(H) dynamic quantile test 1, the hybrid non-parametric models and the FEVT models are rejected for five

or fewer stocks (ranging from FHS: one company, to FGEV: five stocks) whilst others are rejected for more

stocks. Especially, HS (16 stocks), RM (20 stocks) and CAViaR (30 stocks) are rejected over the half of the

30 stocks. These results are consistently observed in the (I) dynamic quantile test 2. Therefore, the hybrid

non-parametric models provide statistically the most powerful coverage ability, which is independent of the

underlying state.

In Panel B, the (A) empirical coverage probability of FAR (0.99%) is closest to the 1% nominal proba-

bility. GARCH (1.09%) and FHS (1.14%) somewhat underestimate VaR. HS (1.79%) and CAViaR (1.59%)

much underestimate the VaR whilst the FEVT models (0.25%–0.35%) greatly overestimate it. These lead

to considering that adoption of the HS and CAViaR models will be classified in the “Yellow” zone. The

“Green” zone of the EVT models is completely due to the considerable overestimation of VaR, which is mis-

leading. For the (C) MRCR, the GARCH models (23.98%–24.42%) require the smallest capital. The hybrid

non-parametric models (25.19%–27.92%), CAViaR (24.77%), and the FEVT models (28.38%–28.62%) re-

quire slightly more capital. The unfiltered EVT models (33.44%–33.50%) have the most expensive cost of

adoption. The (D) predictive quantile loss of the GARCH models (3.31%–3.34%) are the smallest whilst

the losses are largest for HS and the unfiltered EVT models (4.43%–4.49%). Those of the hybrid non-

parametric models, the FEVT models and CAViaR (3.35%–3.65%), are slightly more than those of the

GARCH models. These results confirm that the hybrid non-parametric models are superior to the others

in terms of coverage ability and reasonable economic cost. The GARCH models, the FEVT models and

CAViaR are successful at reducing the economic cost but fail to achieve adequate coverage ability. Fur-

thermore, the unfiltered EVT models are undesirable from the results of both evaluations. Moreover, the

statistical evaluations from (E) to (I) show that the hybrid non-parametric models are successful for all the
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tests. HS, the EVT models and CAViaR are strongly rejected for two tests at least. The GARCH models

fail for only (I) dynamic quantile test 2. Hence, the statistical backtestings further confirm that the coverage

ability of the hybrid non-parametric models are accurate and state-independent.

[TABLE 7 ABOUT HERE]

Stylised Facts

We can draw the following conclusions from the quantitative and the statistical backtestings. First, the hybrid

non-parametric models, FAR and FHS, perform better in modelling the tail behaviour than purely non-

parametric and parametric models do. Second, the GARCH models with normal/Student’s t-distributions

considerably underestimate VaR whilst the EVT models much overestimate it. The normal distribution

generally has a thinner tail than the distribution of financial time series, which limits its ability in capturing

extreme risk. Furthermore, both the normal distribution and Student’s t-distribution are symmetric so that

they cannot detect the skewness which is frequently observed in financial time series (Theodossiou, 1998).

The GARCH models building on the assumption of these two distributions therefore tend to underestimate

the tail risk. Furthermore, the GARCH models perform worse for a long position than for a short position,

since the models cannot detect the negative skewness frequently observed in individual stocks. On the other

hand, the EVT models estimate VaR by capturing the extreme of the extreme values which usually tends to

be greater than the true extreme values. Hence, the EVT models can cover the loss very well in the period

of a financial crash whilst it often much overestimates the potential loss in a normal period. Furthermore,

there is always the trade-off between the number of observations and the degree of extremeness in applying

EVT models.29 Third, the dynamic models considering the time-varying distributions perform better than

the static models such as HS and the unfiltered EVT models. Especially, the coverage ability of the dynamic

models is much more independent of the underlying state than those of the static models. Furthermore, HS

and the unfiltered EVT models are improved by the GARCH filtering of time-series. Finally, the above

conclusions are consistently observed in both long and short positions. Hence, our proposed hybrid non-

parametric models are quite robust in forecasting VaR.

5.4 The Effect of Window Size

We repeat the previous analysis for the window size of 500, as a robustness check. The quantitative measures

and test statistics for the 30 stocks and the portfolio are calculated based on the 1,763 daily forecasts (except

for Hewlett-Packard, AT&T and Verizon Communication Inc., which are calculated using 1,178, 1,756 and

1,637 forecasts, respectively). The evaluation results are presented in Tables 8 and 9. Table 8 presents the

results for the long position and Table 9 presents the results for the short position. Overall, the results are

consistent with those for the shorter window size.
29The EVT estimates are affected by a small number of observation. If we set a wide block size for extreme observations, the

number of extreme observations is not enough to estimate the parameters accurately. If we obtain enough observations by setting a
narrow block size for extreme observations, the degree of extremeness is weaker.
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5.4.1 Long Position

Table 8 reports the results for the long position. The quantitative backtesting results, summarised in Panel A,

are strongly consistent with those of the shorter window size. The hybrid non-parametric models outperform

other models in terms of the coverage ability and the economic cost. The GARCH models reduce the

economic cost but fail to improve the coverage ability. The EVT models fail both at improving the coverage

ability and at reducing the economic cost. The notable effects of the longer window size are observed in HS

and the EVT models. First, the EVT models greatly overestimate VaR compared with the shorter window

size. This is driven by the degree of extremeness becoming stronger as the window size increases. On the

other hand, HS considerably underestimates VaR with the longer window size. As we use the longer history

to estimate a non-parametric distribution, the weight on recent regime changes such as volatility clustering

is reduced. Hence, the underestimation would be frequently observed during the “Recession”.30 Second,

these inherent limitations of the EVT models and HS also make for an increase in the economic cost. Those

of the EVT models most significantly increase and the magnitudes are much larger than those of the shorter

window size. The performance of CAViaR improves a bit and the hybrid non-parametric models performs

similarly with the shorter window size. The statistical evaluations of Panel A are also almost consistent

with those of the shorter window size. The hybrid non-parametric models provide statistically desirable

performance for banks and regulators to adopt the models as their internal VaR models. Generally, the

rejection frequency decreases for all the tests except for HS. However, there are no significant changes in

that the hybrid non-parametric models still outperform other models.

Panel B presents the evaluations for the portfolio. Based on the quantitative evaluations, the hybrid

non-parametric models and CAViaR present good coverage ability and small economic cost. The GARCH

models achieve a small economic cost whilst they still suffer from poor coverage ability by reason of their

considerable underestimation of VaR. The EVT models obtain neither powerful coverage ability nor small

economic cost by reason of their huge overestimation of VaR. Hence, the results of the quantitative evalua-

tions are more or less consistent with those for the shorter window size. Moreover, the statistical evaluations

show that the hybrid non-parametric models and CAViaR are successful for all tests. The FEVT models are

strongly rejected for the (E) unconditional coverage test and the (G) conditional coverage test. Other models

are rejected for all tests except for the (F) independence test. The results of the statistical evaluations are

consistent with those of the quantitative evaluations. Furthermore, the results are more or less consistent

with those for the shorter window size.

In sum, the quantitative and the statistical evaluations confirm that the hybrid non-parametric models

provide powerful coverage ability which is independent of the underlying state. Generally, the performance

of the models somewhat improves as the window size increases whilst the HS and the EVT models still

suffer from their inherent limitations.

[TABLE 8 ABOUT HERE]
30For example, the recent regime indicates the “Recession” but HS includes the past information of the “Boom” and gives the

same weight to all the historical events. Hence, HS is likely to underestimate VaR for the “Recession”.
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5.4.2 Short Position

The results for the short position are summarised in Table 9. The quantitative backtestings, summarised in

Panel A, are overall consistent with those of the long position. Furthermore, those are strongly consistent

with the shorter window size. The hybrid non-parametric models outperform other models in terms of

coverage ability and economic cost. The GARCH models are successful at reducing the economic cost

but fail to improve the coverage ability. The EVT models fail to improve the coverage ability and yield

a big economic cost by the reason of their considerable overestimation of VaR (see Section 5.2.2 for the

detailed explanation of the longer window size effect). The statistical evaluations also present that the

hybrid non-parametric models provide powerful coverage ability that is independent of the underlying state,

which is consistently observed in the three conditional tests. The hybrid non-parametric models provide the

statistically desirable performance for banks and the regulators in adopting the models as their internal VaR

models.

The evaluations for the portfolio, summarised in Panel B, presents that the hybrid non-parametric mod-

els, GARCH and CAViaR have good coverage ability and small economic cost. The FEVT models obtain

more or less a small economic cost but fail to obtain a good coverage ability. The unfiltered EVT models get

neither a powerful coverage ability nor a small economic cost. Moreover, the statistical evaluations show

that the hybrid non-parametric models, the GARCH models and CAViaR are successful for all the tests. The

EVT models are strongly rejected by two or more tests and HS is strongly rejected by four tests. The overall

results of the quantitative and statistical evaluations are more or less consistent with those for the shorter

window size.

Overall, the quantitative and the statistical evaluations confirm that the hybrid non-parametric models

provide a powerful coverage ability that is independent of the underlying state. Other models such as the

GARCH models and CAViaR provide an improved performance especially for the portfolio but they still

provide inferior performance for the 30 stocks on average. The performance of the models slightly improves

as the window size increases for the short position. However, the finding that the hybrid non-parametric

models outperform other models is consistently observed.

[TABLE 9 ABOUT HERE]

Stylised Facts

We can draw the following conclusions for the case with the larger window size. First, the hybrid non-

parametric models, FAR and FHS, perform better in modelling the tail behaviour than purely non-parametric

and parametric models. This finding is consistently observed for both the long and the short position.

Second, the performance generally improves as the window size increases for the long and the short position

except for HS and the EVT models. HS more considerably underestimates VaR with the longer window size.

If we use the longer history to estimate a non-parametric distribution, the weight on the recent regime such

as volatility clustering is reduced. Hence, such underestimation would be frequently observed during the

“Recession” by construction. On the other hand, the EVT models more greatly overestimate VaR with the

longer window size, which is driven by the degree of extremeness becoming stronger as the window size
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increases. Therefore, we confirm that the hybrid non-parametric models outperform other models for the

case of the longer window size.

6 Conclusion

This study introduces a novel econometric technique in order to improve VaR analysis in terms of cov-

erage ability and economic cost. Our proposed model complements pure non-parametric and parametric

approaches by applying FAR to estimating and forecasting the intraday return density function.

We perform extensive evaluations on the performance of FAR modelling for the density function. First,

we demonstrates that FAR is the best predictor of the intraday density function compared with alternative

functional models such as AVE and LAST, with 30 stocks of DJIA and an equal-weighted portfolio. Second,

a Monte Carlo simulation study provides the evidences that FAR can more precisely estimate and forecast

a true VaR than other existing models: HS, FHS, GARCH, RM, EVT models, FEVT models, and CAViaR.

Third, a wide range of quantitative and statistical backtestings are applied to the alternative VaR models and

the results point strongly favour the hybrid non-parametric approaches which includes our FAR approach

and FHS.

Overall, our extensive horse-racing of VaR models contributes to the understanding of VaR analysis in

the following ways. First, FAR describes the dynamics of the intraday return density well. It is a gen-

eralisation of all autoregressive specifications. Hence, it considerably removes the uncertainty of existing

parametric autoregressive models. Second, a non-parametric density function associated with a dynamic

structure is superior to a parametric density function in estimating and forecasting risk. This is driven by the

strong coverage ability of the non-parametric approach being independent of the underlying state in time-

varying modelling. Third, a hybrid scheme reduces the economic cost and improves the coverage ability.

The coverage ability is mainly determined by the robust estimation of the VaR and the economic cost by

the time-independence from the underlying state. The hybrid scheme absorbs the robustness from the non-

parametric approach and the time-independence from the dynamic modelling. Fourth, intraday information

is helpful in forecasting the daily risk. The intraday data possesses important information which is relevant

to market participants in forming their future expectations. Understanding the intraday return distribution is

key to access the accumulated results of the daily return distribution. Hence, an accurate and well organised

modelling of the intraday return distribution helps to estimate and forecast the daily risk.

There are several unanswered questions raised by this study which cannot be explained further due to

the limited space and the focus of our study. First, we will show that individual VaR measures perform dif-

ferently under normal and extreme market condition. It would be possible to develop a systematic approach

of switching the use of measures conditional on the market condition. This switching will provide the jump

necessary for the sudden change of a company’s risk profile when they are approaching bankruptcy. This

will require a Bayesian learning approach or Markov switching modelling of FAR. Second, VaR models

capture risk spillovers indirectly to the extent that institutions are exposed to common risk factors, but they

do not provide explicit information about the co-dependence of the risk. Given the increased interest in

systemic risk, it would be desirable to extend our analysis into the co-dependence of risk between indi-
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vidual institutions and the financial system. We can forecast CoVaR (Adrian and Brunnermeier, 2010) by

applying FAR to the conditional quantile function of the financial system conditional on the individual in-

stitution. Hence, this will contribute to forecasting the systemic risk. Furthermore, Copula will be required

for analysing the co-dependence of the risk with FAR. Finally, VaR analysis will call for a robust statistical

test, since the existing tests usually suffer from low power.
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Figure 1: Functional Autoregressive Modelling of Non-parametric Intraday Density Function
The figures present the intraday return density forecast of the equal weighted DJIA portfolio on the 24th May 2001. 250 past
densities are used for the estimation of FAR. Panel (a) presents that the density forecast

(
f̂T+1

)
consists of the mean of the density(

f̄
)

and the correction
(
ÂLwT

)
in (17). Panel (b) shows the forecasting error (ε̂T+1). Panel (c) shows that the fluctuation (wT )

gradually disappears as time period increases and is completely gone at the end. Panel (d) shows the mean reversion of the density
function such that the density forecast converges to the expectation of the density function as the time period increases.

(a) f̂T+1 = f̄ + ÂLwT (b) fT+1 = f̂T+1 + ε̂T+1

(c) Correction of Fluctuation (d) Mean Reversion of Density Function
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Table 1: Summary of VaR Models
There are ten VaR models which compete each other in our study. They are categorised by modelling style: (i) parametric approach,
(ii) non-parametric approach, (iii) empirical quantile approach and (iv) hybrid non-parametric approach. Our suggested VaR model,
FAR, is included in the hybrid non-parametric approach.
Model Name Category

(1) FAR Functional Autoregressive Modelling of Densities Hybrid approach
(2) FHS Filtered Historical Simulation Hybrid approach
(3) HS Historical Simulation Non-parametric approach
(4) RM RiskMetrics Parametric approach
(5) GARCH GARCH with t-distribution Parametric approach
(6) GEV Generalised Extreme Value Distribution Parametric approach
(7) GPD Generalised Pareto Distribution Parametric approach
(8) FGEV Filtered Generalised Extreme Value Distribution Parametric approach
(9) FGPD Filtered Pareto Distribution Parametric approach
(10) CAViaR Conditional Autoregressive Quantile Empirical quantile approach

Table 2: Data Description for 30 Components of DJIA and Portfolio
30 companies of DJIA are collected from Trade and Quote (TAQ) and the portfolio is constructed by equally weighting their returns.

Company From To Open Close

(1) Alcoa Inc. 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(2) American International Group, Inc. 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(3) American Express Company 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(4) The Boeing Company 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(5) Citi group Inc. 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(6) Caterpillar Inc. 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(7) E.L. Du Pont de Nemours & Company 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(8) Walter Disney Company 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(9) General Electric Company 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM

(10) General Motors 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(11) Home Depot, Inc. 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(12) Honeywell International Inc. 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(13) Hewlett-Packard Company 06-May-02 31-Dec-08 9:30 AM 4:00 PM
(14) International Business Machine Corp. 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(15) Intel Corporation 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(16) Johnson & Johnson 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(17) J.P. Morgan Chase & Co. 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(18) The Coca-Cola Company 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(19) McDonald’s Corporation 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(20) 3M Company 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(21) Altria Group Inc. 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(22) Merck & Co, Inc. 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(23) Microsoft Corporation 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(24) Pfizer, Inc. 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(25) The Procter & Gamble Company 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(26) AT&T 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(27) United Technology Corporation 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(28) Verizon Communication Inc. 03-Jul-00 31-Dec-08 9:30 AM 4:00 PM
(29) Wal-Mart Stores, Inc. 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
(30) Exxon Mobil Corporation 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM

Portfolio 03-Jan-00 31-Dec-08 9:30 AM 4:00 PM
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Table 4: Forecasting Performance of Alternative FAR models by Three Divergence Criteria
DH , DU and DE denote the Hilbert norm, uniform norm and entropy, respectively. Figures are evaluated by the mean and the
median value between one-step-ahead density forecast and the true density for each of the three models.

Mean Median
Models DH DU DE DH DU DE

Panel A: Average of 30 Components of Dow Jones Industry
FAR 0.0284 0.2664 0.0406 0.0160 0.2044 0.0304
AVE 0.0473 0.3812 0.0601 0.0235 0.2493 0.0393
LAST 0.0353 0.2872 0.0557 0.0218 0.2335 0.0431

Panel B: Portfolio
FAR 0.0276 0.2634 0.0465 0.0150 0.1992 0.0344
AVE 0.0568 0.4438 0.0916 0.0246 0.2534 0.0552
LAST 0.0320 0.2706 0.0600 0.0203 0.2245 0.0470
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Table 5: Monte Carlo Simulation Study for Evaluating The Precision of VaR Forecast
Intraday returns are generated by the NIG distribution using four moments that follow VAR(1) process (see Assumptions 1–4 for
details). We generate 78 observations for each day and 251 days for conducting one-step-ahead forecast for both long- and short-
position conditional on the past 250 days. The simulation study replicates this forecasting 5,000 times with ten models and evaluates
the forecasting precision based on Bias, RMSE, MAE, MAPE and PMAD. Three representative experiments are considered out of
31 estimations. Experiment I considers the aggregate information of 30 stocks and select the portfolio that presents an equal weight
composite of 30 stocks. Experiment II considers a medium case for 30 stocks. Mean or median values of parameters are considered
but the mean is severely affected by outliers of bailout companies such as AIG, Citi and GM. Experiment III consider the most
persistent estimation case among 30 stocks, Exxon Mobil Corporation.

Bias RMSE MAE MAPE PMAD
Models Long Short Long Short Long Short Long Short Long Short

Experiment I
FAR -0.63 -0.63 1.04 0.98 1.79 1.81 1.80 1.74 0.39 0.40
FHS -1.62 -1.17 1.85 1.41 2.23 2.00 2.17 2.01 0.49 0.44
HS -1.65 -1.21 1.83 1.39 2.23 2.01 2.20 2.03 0.49 0.44
RM -0.96 -0.95 1.26 1.26 1.92 1.94 1.87 1.93 0.42 0.42
GARCH -1.03 -1.02 1.15 1.15 1.89 1.90 1.92 1.95 0.41 0.42
GEV -2.96 -3.04 3.20 3.28 3.17 3.25 2.87 2.87 0.69 0.71
GPD -2.87 -2.97 3.12 3.22 3.10 3.20 2.81 2.83 0.68 0.70
FGEV -2.90 -2.97 3.18 3.25 3.14 3.19 2.80 2.83 0.69 0.70
FGPD -2.82 -2.91 3.12 3.20 3.08 3.15 2.75 2.80 0.67 0.69
CAViaR -1.10 -1.13 1.97 2.02 2.25 2.30 2.15 2.00 0.49 0.50

Experiment II
FAR -0.57 -0.52 0.90 0.86 2.83 2.85 2.03 1.87 0.38 0.38
FHS -2.66 -1.89 3.01 2.26 3.64 3.32 2.54 2.27 0.48 0.45
HS -2.68 -1.92 2.98 2.22 3.63 3.31 2.54 2.28 0.48 0.44
RM -1.51 -1.50 2.01 2.01 3.17 3.20 2.17 2.13 0.42 0.43
GARCH -1.60 -1.60 1.78 1.78 3.09 3.12 2.25 2.15 0.41 0.42
GEV -4.90 -4.94 5.27 5.32 5.24 5.31 3.20 3.21 0.70 0.71
GPD -4.74 -4.78 5.16 5.19 5.12 5.19 3.14 3.17 0.68 0.70
FGEV -4.85 -4.90 5.27 5.33 5.22 5.29 3.19 3.18 0.69 0.71
FGPD -4.70 -4.75 5.15 5.22 5.11 5.18 3.15 3.14 0.68 0.69
CAViaR -1.73 -1.83 3.29 3.37 3.76 3.80 2.24 2.42 0.50 0.51

Experiment III
FAR -0.72 -0.65 1.10 1.01 2.11 2.20 7.71 1.70 0.37 0.37
FHS -2.06 -1.48 2.34 1.79 2.79 2.59 9.71 2.02 0.49 0.44
HS -2.11 -1.55 2.32 1.78 2.79 2.61 9.73 2.07 0.49 0.44
RM -1.31 -1.24 1.67 1.62 2.45 2.49 8.40 1.95 0.43 0.42
GARCH -1.36 -1.30 1.52 1.47 2.39 2.45 8.72 1.93 0.42 0.41
GEV -3.74 -3.86 4.02 4.15 3.99 4.15 12.37 2.95 0.71 0.70
GPD -3.62 -3.74 3.92 4.06 3.90 4.06 11.87 2.92 0.69 0.69
FGEV -3.67 -3.74 4.02 4.07 3.95 4.05 12.31 2.91 0.70 0.68
FGPD -3.56 -3.64 3.93 4.01 3.87 3.99 11.84 2.91 0.68 0.67
CAViaR -1.41 -1.47 2.53 2.68 2.83 2.94 9.18 1.98 0.50 0.50
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