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Abstract

In this paper, we analyze the economic and the statistical properties of manipulation-
proof performance measure (MPPM) proposed by Goeztmann, Ingersoll, Spiegel, and
Welch (2007). Speci�cally, we propose a novel way to incorporate macroeconomic infor-
mation into the accurate estimation of conditional MPPMs. Our approach extends and
exploits the recent developments in nonparametric estimation methods that are used in
portfolio choice literature. Using a large consolidated hedge fund database, we demon-
strate that a strategy based on the standard MPPM delivers poor out-of-the sample
performance with a signi�cant downside risk. After allowing hedge fund MPPMs vary
nonparametrically based on existing macroeconomic environment, we show that the
conditional strategy delivers superior out-of-the-sample performance with a negligible
tail risk. The performance of the conditional MPPM strategy is impressive relative to
other strategies. It outperforms signi�cantly strategies based on the traditional mea-
sures (e.g., the t-statistic of Fung and Hsieh (2004) alpha and Sharpe ratio) or recently
proposed new measures (e.g., R2 and Strategy Distinctness Index). Our results are
robust across hedge fund size groups, even after taking into account typical hedge fund
data biases and redemption restrictions associated with portfolio rebalancing.
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1 Introduction

The aim of this paper is to extend recent unconditional manipulation proof performance mea-

sures (MPPM) to incorporate predictive variables and to study the empirical performance

of unconditional and conditional MPPMs. In their seminal study, Goetzmann, Ingersoll,

Spiegel, and Welch (2007) (henceforth, GISW) propose a measure (MPPM) that is carefully

theoretically motivated and less vulnerable than other measures to simple dynamic manip-

ulation strategies. Can investors use such a measure ex ante to create portfolios of hedge

funds that generate superior performance ex post? Given recent evidence1 that predictive

variables can be used to improve hedge fund selection, would a conditional version of the

MPPM perform even better out-of-sample? As the study by GISW (2007) does not address

these important questions, we �ll this important research gap. Despite its theoretical ap-

peal, we show that the standard MPPM fails to predict hedge funds�future performance. In

contrast, our novel nonparametric approach to incorporate macroeconomic information into

the estimation of MPPM is associated with superior hedge fund performance predictability.

Standard �nancial economics text books propose that the investment manager�s perfor-

mance should be measured using Sharpe ratio or alpha. To evaluate the performance of

traditional mutual funds is relatively straightforward compared to measuring the perfor-

mance of complex investment strategies employed by hedge funds (Kosowski, Naik, and Teo

(2007), Bollen and Pool (2008), (2009), Patton, Ramadorai and Streat�eld, 2011). The com-

plexity of hedge fund strategies makes benchmarking their returns particularly challenging

and raises the possibility of model misspeci�cation. Investment managers have an obvious

incentive to take actions that enhance performance measures. In doing so investment man-

agers can increase a fund�s performance measure, either through e¤ort and application of

skill, or through �information-free�activities that do not actually add value for the fund�s

investor. In particular, �information-free�investing can be seen as a way to emphasize that

it is not based upon the production and deployment of value-relevant information about the

underlying assets in the portfolio. Due to the �exible investment mandate of hedge funds,

1See, for example, Avramov, Kosowski, Naik, and Teo (2010), Avramov, Barras, and Kosowski (2012).
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it is well-known (e.g., Weisman (2002)) that some hedge funds engage in information-free

investing.

To avoid the manipulation of standard performance measures, GISW (2007) propose a

measure that cannot be enhanced using �information-free� investing. Several recent stud-

ies (e.g., Bali, Brown, and Caglayan (2011), Titman and Tiu (2011), and Sun, Wang, and

Zheng (2011) evaluate hedge fund ex-post performance using the MPPM since hedge funds

are relatively unconstrained in their derivatives use and have option-like incentive struc-

tures (Almazan, Brown, Carlson, and Chapman (2004), Brunnermeier and Pedersen (2009)).

However, to the best of our knowledge, there is no study that employs the MPPM measure

to predict hedge fund performance. Such an exercise would shed further light how hedge

funds engage �information-free�investing to increase their performance measures. While the

MPPM has been shown to be a theoretically superior ex-post performance measure, there

is so far no evidence on whether the use of the MPPM leads to performance persistence ex

post when the MPPM is used to sort funds ex ante.

We make several contributions in this paper. It is well-known that the MPPM is theo-

retically superior compared to standard measures such as Sharpe ratio and alpha, but little

is known about the econometric properties of the MPPM. Our �rst contribution is therefore

to analyze the economic and statistical properties of the MPPM using a large consolidated

hedge fund database. Speci�cally we develop statistical signi�cance tests for the uncondi-

tional and conditional MPPM, which we label standardized (conditional and unconditional)

MPPM.

Second, we propose a new way to estimate a conditional MPPM using a nonparametric

approach. Speci�cally, to estimate the MPPM precisely, we apply kernel regression tech-

niques. To demonstrate the superiority of a new conditional MPPM estimator, we predict

hedge fund performance by incorporating predictability based on a set of macroeconomic

variables. One novel aspect of our approach is the use of a copula transform that allows us

to exploit dependencies between macroeconomic variables and removes the noise in the mar-

ginal distributions of the macroeconomic variables. We can exploit a large set of macroeco-
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nomic variables, which are documented, to predict hedge fund performance (e.g., Avramov,

Kosowski, Naik, and Teo (2010)) or shifts in hedge fund systemic risk loadings (e.g., Patton

and Ramadorai (2010)). In particular, our set of predictors contains the default spread,

the term and TED spreads, the change in 3-month T-bill rate, aggregate hedge-fund indus-

try �ows, volatility measures (both VIX and variance risk premium), and lagged return on

S&P500 index and its dividend yield. We apply a nonparametric regression framework so

that conditional MPPMs involve locally weighted averages, where localization is done in the

state space of historical macroeconomic information. The state space localization is analo-

gous to the time space localization which is used in moving averages. Moving averages are

often ad-hoc, but our novel MPPM estimators are based on statistical techniques that can

be motivated by economic theory.

Third, we study the economic value of the unconditional and conditional MPPM strate-

gies. Our results suggest that standard MPPM fails to predict consistently hedge fund

future performance. Indeed, a strategy based on the unconditional MPPMs delivers poor

out-of-the-sample performance with a signi�cant tail risk. In contrast, a strategy based

on our novel conditional MPPMs, which vary nonparametrically based on the macroeco-

nomic state, delivers superior out-of-the-sample performance. In particular, the basic and

standardized conditional MPPM strategies provide statistically and economically signi�cant

performance predictability. The basic conditional MPPM strategy earns superior returns,

alphas and MPPMs, while its standardized version delivers extremely high Sharpe and infor-

mation ratios. Importantly, the outstanding performance is not associated with performance

manipulation and signi�cant downside risk, since the MPPMs are extremely high and ex-

pected shortfalls relatively low in respect to hypothetically earned pro�ts.

Importantly, from the perspective of economic value, a conditional strategy based on the

nonparametric MPPM delivers superior predictability among large funds and even at annual

horizons. The magnitude of predictability is superior to standard measures based on the

t-statistic of Fung and Hsieh (2004) alpha or other new methods including the Titman and

Tiu (2011)�s R2 and Sun, Wang and Zheng (2010)�s SDI.
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Our paper is related to three streams of literature. First, we add to literature on hedge

fund performance and its persistence. Using sophisticated econometric methods, recent

literature (e.g., Kosowski, Naik, and Teo (2007) and Jagannathan, Malakhov, and Nokikov

(2010)) has shown that hedge fund performance persists at annual horizons. Titman and Tiu

(2011) show that skilled managers choose to hedge away systemic risks and therefore, have

a lower R2 with respect to systematic risk factors. Based on Strategy Distinctness Index

(SDI), Sun, Wang, and Zheng (2011) show that skilled managers are more likely to pursue

unique investment strategies delivering superior risk-adjusted performance. We contribute

to this literature by showing that hedge fund performance persistence can be signi�cantly

improved by relying on conditional MPPM that turns out to be superior over the other

performance measures in predicting hedge fund performance.

Second, nonparametric methods are used successfully in choosing optimal portfolio and

asset pricing, while not in predicting investment fund performance. Speci�cally, Aït-Sahalia

and Brandt (2001), Brandt (1999) and Györ�, Lugosi, and Udina (2006) choose directly opti-

mal portfolio weights without modelling conditional return distribution using nonparametric

methods. Wang (2003) propose a new conditional asset pricing test based on non-parametric

methods. We contribute to these nonparametric methods by using a copula transformation

that allows us to better exploit dependencies between macroeconomic variables in predicting

hedge fund performance.

Finally, this paper relates to literature examining hedge fund manipulation, misreport-

ing, and strategic reporting behavior. The recent studies (e.g., Bollen and Pool (2009),

Patton, Ramadorai, and Streat�eld (2011), and Aragon and Nanda (2011)) show that hedge

funds misreport, revisit, and strategically delay their returns when reporting in commercial

databases. In the next version, we aiming at adding to this literature by explicitly linking

performance manipulation on hedge funds�options usage and risk-taking.

The paper is structured as follows. Section 2 focuses on the statistical properties of

MPPM. Section 3 provides the empirical results. In Section 4, we give a conclusion.
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2 Measuring hedge fund performance using MPPM

This section presents performance measures used in the study. We propose a new way to

measure investment manager performance under manipulation-proof conditions. In partic-

ular, we build on the GISW (2007) manipulation-proof performance measures. We extend

it by proposing two new statistical estimators based on the economic theory. First, we take

the estimation error into account in the estimation of the MPPM. Second, we incorporate

nonparametrically macroeconomic information into the estimation of the MPPM in order to

obtain accurate predictions about future MPPM realizations.

2.1 Basic unconditional MPPM

Our �rst performance measure is the basic MPPM based on GISW (2007). Let r1; : : : ; rT be

the observed net returns of a hedge fund. Denote

Yt =

�
1 + rt
1 + rft

�1��
; (1)

where � > 1 and rf1; : : : ; rfT are the net returns of a risk free investment. Parameter � is

a risk aversion parameter and larger values of � are used in the performance measure when

the investor is more risk averse. Following the practise in the literature, we set risk aversion

equal to three.2 The basic MPPM based on DISW (2007) is de�ned as

MPPM =
1

(1� �)�t log
 
1

T

TX
t=1

Yt

!
;

where �t = 1=12 for the monthly hedge fund data

Next, we propose the Standardized MPPM that takes estimation error into account. Let

�̂ =
1

T

TX
t=1

Yt;

2Unreported robustness checks show that the results are not sensitive to the choice of risk aversion
coe¢ cient.
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�̂2 =
1

T

TX
t=1

Y 2t � �̂2;

and3

�(MPPM) =
1

(1� �)�t
�̂=
p
T

�̂
:

De�ne Standardized MPPM such as

Stand-MPPM =
MPPM
�(MPPM)

:

Intuitively, the estimation error is taken into account by dividing the point estimate of the

MPPM by its estimation uncertainty.

2.2 Nonparametric conditional MPPM

Next, We apply a nonparametric regression framework so that conditional MPPMs involve

locally weighted averages, where localization is done in the state space of historical macroeco-

nomic information. The state space localization is analogous to the time space localization

which is used in moving averages. Moving averages are often ad-hoc, but our novel MPPM

estimators are based on statistical techniques that can be motivated by economic theory.

Formally, to estimate the Conditional MPPM , let Z1; : : : ; ZT 2 Rd be the observed

relevant macroeconomic information set. De�ne Conditional MPPM in the following way

C-MPPM =
1

(1� �)�t log
 

TX
t=2

pt(ZT )Yt

!
;

where

pt(ZT ) =
Kh(Zt�1 � ZT )PT
i=2Kh(Zi�1 � ZT )

;

Kh(x) = K(x=h)=h
d is the scaled kernel function, K : Rd ! R is the kernel function, and

h > 0 is the smoothing parameter.
3We can approximate Var(g(X)) � [g0(�)]2�2, where � = EX and �2 = Var(X). Thus Var(g( �X)) �

[g0(�)]2�2=T , where �X =
PT

t=1Xt=T . When g(x) = log(x), then g
0(x) = 1=x and Var(log( �X)) � �2=(T�2).
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We also estimate the Conditional standardized MPPM. Let

�̂c =
TX
t=2

pt(Zt)Yt;

�̂2c =

TX
t=2

pt(Zt)Y
2
t � �̂2c ;

and

�(c.MPPM) =
1

j1� �j�t
�̂c

qPT
t=2 pt(Zt)

2

�̂c
:

Then, de�ne the Conditional standardized MPPM as

C-Stand-MPPM =
c.MPPM
�(c.MPPM)

:

The conditional MPPM is a normalized logarithm of a weighted average of the past values

of Yt and the weight pt(ZT ) is large at those points in time t when the relevant information

Zt available at that time is close to the current relevant information ZT , that is, the weight

pt(ZT ) is large at those points in time t when economic conditions as described by the macro

variables are similar to the current situation. Smoothing parameter h controls the degree of

similarity so that for a small h only very similar situations are taken into account whereas

for a large h also less similar situations are taken into account when calculating the weighted

average. We set h in our baseline application equal to one.4

When we use kernel weights with a single smoothing parameter h for each component

of Zt, it is important that the components of Zt are standardized so that their scales are

roughly the same. For example, a simple standardization would be to make the sample

standard deviations of the components of Zt equal to one: let Z0t = (Z0t;1; : : : ; Z
0
t;d) be the

original measurements and de�ne

Zt =
�
Z0t;1=st;1; : : : ; Z

0
t;d=st;d

�
;

4Unreported robustness tests show that the results are not sensitive to the choice of bandwidth.
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where s2t;l = t
�1Pt

u=1(Z
0
u;l � �Z0t;l)

2, �Z0t;l = t
�1Pt

u=1 Z
0
u;l, for l = 1; : : : ; d. We have used the

standardization

Zt =
�
��1(Z1t;1); : : : ;�

�1(Z1t;d)
�
; (2)

where � : R! [0; 1] is the distribution function of the standard normal distribution,

Z1t;l =
rank(Z0t;l)

t+ 1
;

and

rank(Z0t;l) = #fZ0u;l : Z0u;l � Z0t;l; u = 1; : : : ; tg;

where notation #A denotes the number of elements of set A. This transformation makes the

distribution of the components of Zt approximately standard normal but it does not change

the copula (joint distribution) of the components of Z0t .

The relevant information Zt 2 Rd is a vector that contains information about relevant

macro variables and also about their immediate past. For example, we might havem relevant

macro variables Wt;1; : : : ;Wt;m and then we take into account k � 1 previous values of the

macro variables and put

Z0t = (Wt;1; : : : ;Wt�k;1; : : : ;Wt;m; : : : ;Wt�k;m) 2 Rd;

where d = mk, and then Zt is obtained by (2).

Finally, it is important to note that we overcome the �curse of dimensionality� using

completely nonparametric kernel regression. The curse of dimensionality refers in the context

of kernel regression to the fact that the rate of convergence of the estimator to its asymptotic

distribution deteriorates exponentially with the number of regressors. According to Aït-

Sahalia and Brandt (2001), given the relatively short sample, one cannot reliably estimate

the conditional expectation with a nonparametric estimator for more than two predictors.

To overcome this econometric problem, they adopt a semiparametric approach. However,

new evidence presented in Györ�, Lugosi and Udina (2006) and in our empirical section
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shows that even completely nonparametric kernel regression can be used e¢ ciently in time

series prediction.

3 Empirical Results

3.1 Data description and performance measures

Using a large consolidated hedge fund database, we estimate hedge fund performance mea-

sures. The aggregate data set contains hedge funds from BarclayHedge, Hedge Fund Research

(HFR) and Lipper TASS databases. We merge databases using the novel merging procedure

proposed by Joenväärä, Kosowski, and Tolonen (2012). The raw data set contains 16,449

unique hedge funds having at least 12 monthly return observations.

For each individual hedge fund having at least 24 return observations, we estimate un-

conditional MPPMs (MPPM ) and its standardized version (Stand-MPPM ), which takes

estimation error into account. Following the practise in the literature, we set the risk aver-

sion coe¢ cient equal to three. We then estimate the conditional MPPMs using the whole

return history of each individual hedge fund. Both the conditional MPPM (C-MPPM )

and its standardized version (C-Stand-MPPM ) are estimated using a nonparametric kernel

regression provided in the methodological part.

As macro economic variables, we use term spread, default spread, volatility, dividend

yield, TED spread and aggregate �ow as well as lagged S&P 500 and its dividend yield. Our

choice of predictor variables is based on several studies that have used these variables to

predict hedge fund performance (e.g., Avramov, Kosowski, Naik, and Teo (2011)) or shifts

in hedge fund systemic risk loadings (e.g., Patton and Ramadorai (2011)). We also estimate

standard performance measures such as alpha and Sharpe ratio. Hedge fund alphas are

estimated using the Fung and Hsieh (2004) seven-factor model, which is common in many

hedge fund performance studies. We focus on the t-statistics of the Fung and Hsieh alpha

(t-stat of alpha), since it has superior statistical properties compared to alpha (Kosowski,
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Naik and Teo , 2007). The Fung and Hsieh model consists of the S&P 500 excess return, the

Wilshire small cap minus large cap return, the excess return on the 10-year Treasury, the

return spread of Moody�s Baa minus 10-year Treasury, the bond PTFS, the currency PTFS,

and the commodities PTFS, where PTFS is a primitive trend following strategy.

Table 1 presents descriptive statistics for di¤erent performance measures and rank corre-

lations between performance measures. Overall, according to Table 1, performance measures�

rank correlations are quite low, suggesting that the measures contain quite di¤erent informa-

tion. Hence, fund rankings based on one measure are likely to be quite di¤erent from those

based on another measure. The rank correlations are highest between MPPM (C-MPPM)

and Stand-MPPM (C-Stand-MPPM ), being 0.66 (0.61). This a natural result since the

standardized MPPM is de�ned as the MPPM divided by its standard error. In contrast,

rank correlations between unconditional and conditional MPPMs are relatively low ranging

from 0.21 to 0.44. To compare how the information content of MPPMs di¤ers from stan-

dard performance measures, we calculate rank correlations between MPPMs and t-statistic

of alpha. We �nd that the rank correlation between the C-Stand MPPM and the t-stat of

alpha is 0.78. Hence, these two measures contain similar types of information. However, the

rank correlations of the t-statistic of alpha are low for other MPPM speci�cations.

[Insert Table 1 here]

The cross-sectional average of the unconditional MPPM is 2.48 percent per annum, while

it is only 0.85 for the standardized version of the MPPM. The cross-sectional averages of

conditional MPPMs across funds are slightly higher (3.89 percent and 0.59). For comparison

we report the cross-sectional average of the alpha t-statistic (0.80). Cross-sectional standard

deviations show that both MPPMs have the highest variation, while the t-statistic of alpha

has the lowest cross-sectional variation.
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3.2 Unconditional MPPMs and performance persistence

While GISW (2007) show that the MPPM is a theoretically superior performance measure,

there is no comprehensive study that investigates how the MPPM predicts investment man-

agers�future performance. To address this issue, we examine the investment performance of

a strategy that ranks hedge funds based on their MPPMs. We also propose a new way to es-

timate MPPMs by taking estimation error into account. Speci�cally, we sort hedge funds on

January 1 each year from 1996 to 2010 into portfolios, based on the basic and standardized

MPPMs. We use the most recent 24 months of return observations preceding the evaluation

period for each individual hedge fund�s MPPM estimation. We rebalance portfolios on a

yearly basis in order to take into account share restrictions in the form of lock up, notice

and redemption periods.

Table 2 presents the performance persistence results for two unconditional strategies

based on the MPPM and its standardized version. Panel A in Table 2 shows that the

unconditional MPPM strategy performs poorly despite the fact that it should be theoretically

superior. Indeed, for the standard MPPM strategy, the spread portfolios between the top

and the bottom deciles across the wide range of performance measures are indistinguishable

from zero. In addition, there is no monotonic relationship between the hedge fund�s MPPM

and future performance. Hence, with annual rebalancing, investors are not better o¤ relying

on the standard MPPM. Indeed, the strategy based on top MPPM funds is associated with

the highest downside risk among the decile portfolios. The expected shortfall at 95% level

is 9.43 per month. The magnitude is remarkable, since it is over 30 percent higher than the

second highest expected shortfall.

[Insert Table2 here]

Panel B in Table 2 presents the results for the standardized MPPM strategy. At best, the

results show weak performance persistence. Indeed, at the 10 percent signi�cance level, the

top decile�s Sharpe and information ratios are higher than the ones obtained from holding the

bottom decile of funds. However, the spread between the top and bottom deciles�MPPMs
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is not statistically signi�cant. In addition, the respective spreads for the average alpha and

excess returns are indistinguishable from zero. To sum up, the standardized version of the

MPPM works better than the basic MPPM, but still there is little evidence of performance

persistence. This raises the question of whether the conditional MPPMs can be used to

predict hedge funds�future performance successfully.

3.3 Conditional MPPMs and performance predictability

Next, we examine whether conditional MPPMs predict hedge funds�future performance. We

estimate conditional MPPMs using kernel regressions that allow us to exploit information

about the current state of macroeconomic environment in order to obtain more accurate

rankings between hedge funds. We follow similar performance evaluation methodology as

for the unconditional case. The only di¤erence is that we use all the available return history

to estimate MPPMsmore accurately. It is very a natural choice, since the methodology is

based on the idea that the performance of the fund depends heavily on the macroeconomic

environment. Indeed, a speci�c hedge fund trading strategy should work during the certain

type of state of economy.

Figure 1 shows the cumulative returns for the strategies based in both unconditional

and conditional way to estimate MPPMs. The �gure shows that the top decile portfolio

based on the conditional MPPM has the highest cumulative returns. The unconditional

MPPM strategy has the second highest cumulative returns. However, the performance of

the unconditional strategy is signi�cantly lower compared to its conditional counterpart. The

conditional MPPMs strategy seems also to have a lower downside risk than the unconditional

strategy. It is interesting to note that the standardized conditional MPPM strategy seems to

deliver the steadiest returns suggesting that risk averse investors would be willing to invest

in it. Hence, it is interesting to examine more formally whether the conditional MPPM

strategy is able to outperform.

[Insert Figure 1 here]
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Table 3 presents the persistence tests for conditional MPPMs. The overall results show

that the conditional MPPM strategy delivers signi�cant outperformance. Speci�cally, both

versions of conditional MPPMs provide statistically and economically signi�cant performance

persistence across the wide range of performance measures. The conditional MPPM strategy

earns superior returns, alphas and MPPMs, while its standardized version delivers extremely

high Sharpe and information ratios. Importantly, the outstanding performance is not as-

sociated with performance manipulation and signi�cant downside risk, since the MPPMs

are extremely high and expected shortfalls relatively low in respect to hypothetically earned

pro�ts.

[Insert Table 3 here]

Panel A in Table 3 displays a wide range of performance measures for the conditional

MPPM strategy. We �nd that the spread between the top and bottom portfolios for the

MPPM and the alpha are economically and statistically signi�cant. Indeed, the average

spread between the top and bottom Fung and Hsieh (2004) alpha is 9.34 percent per year.

The spread portfolios�MPPM is also extremely high being 8.65 percent on an annual basis.

Together with reasonable low expected shortfall, it suggests that the conditional MPPM

strategy is not associated downside risk and performance manipulation.

Panel B in Table 3 presents the performance measures for the standardized conditional

strategy. The results in Panel B show that the standardized strategy delivers extremely high

performance measured in terms of return taken by a risk unit. Speci�cally, the top decile

portfolio for standardized strategy earns an annual information (Sharpe) ratio equaling to

1.91 (1.84). It is important to note that both of these ratios can be manipulated. However,

this seems not to be the case, since the top decile�s (standardized) MPPM is economically

and statistically signi�cant being annually 8.05 (5.69) percent. Finally, comparing the per-

formance of basic conditional MPPM strategy and its standardized version, one can conclude

that the standardized version delivers steadier performance that would be the interest of the

risk averse investor.
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3.4 Hedge fund size and performance predictability

Although the conditional MPPM strategy seems to outperform, it is important to examine

the pervasiveness of performance predictability across size groups. From a practical perspec-

tive, if the extreme performance predictability is associated with only the small hedge funds,

investors might not be able to exploit predictability. From a general economic perspective, it

is important to know whether performance predictability is not only associated with smaller

hedge funds that do not su¤er from capacity constraints. To investigate the issue, we catego-

rize hedge funds on the three groups based on fund size. Size groups are formed on a yearly

basis in each December. Within size categories hedge funds are sorted on January 1 each

year from 1996 to 2010 into portfolios, based on their conditional MPPM and standardized

conditional MPPM.

[Insert Figure 2 here]

Table 4 presents the results of performance predictability tests across size categories.

The �ndings suggest that predictability exists consistently across size categories. Even large

hedge funds�performance can be predicted using both versions of conditional MPPMs. The

only di¤erence between the size categories is that we document the lower average perfor-

mance measures for larger hedge funds compared to the small one. Figure 2 highlights the

issue. It is interesting to note that Joenväärä, Kosowski, and Tolonen (2012) show that

hedge fund performance persistence based on the t-statistic of Fung and Hsieh (2004) al-

pha is signi�cantly lower for large funds compared to small ones. Hence, our sophisticated

conditional strategy seems to be interesting from a practical point of view.

[Insert Table 4 here]

Panel A in Table 4 presents the performance measures for the conditional MPPM strategy

across size categories. Although, on average, performance measures are lower for the large

hedge funds, top decile portfolios� performance is still outstanding suggesting that large

funds�performance can also be predicted. Speci�cally, we �nd that the top decile portfolio�s
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annual alpha is 6.46 percent with the t-statistic of 1.95. Importantly, the top decile portfolio�s

MPPM is 5.56 percent per year suggesting that superior performance is not associated with

performance manipulation.

Panel B in Table shows the results for the standardized conditional MPPM strategy

across size categories. The �ndings suggest that the strategy delivers steady returns also for

large funds. The magnitude and statistical signi�cance of MPPM, Share and information

ratios is substantial. We �nd that the expected shortfall at 95 con�dence interval is only

2.33 per month. To conclude, the risk averse investor would take advantage of hedge fund

predictability given the low risk level of the standardized conditional MPPM strategy.

3.5 Share restrictions and performance predictability

To exploit performance predictability in hedge fund returns, real-time investors must consider

the impact of share restrictions that limit portfolio rebalancing possibilities. It is a serious

issue that has been often ignored in the prior literature. However, Joenväärä, Kosowski,

and Tolonen (2012) show that annual performance persistence based on the t-statistic of

Fung and Hsieh (2004) alpha vanishes to quarterly horizons when the role of the share

restrictions is taken properly into account. To address the issue, we investigate performance

predictability using (i) semi-annual and (ii) annual rebalancing horizons so that the impact

of share restrictions is not ignored. In particular, within each rebalancing horizon, we form

hedge fund decile portfolios based on conditional MPPMs using only the feasible information.

For the feasible semi-annual (annual) rebalancing strategy, we exclude the funds that have

redemption and lockup periods longer that 6 (12) months. In addition, we exclude funds

having notice periods longer than 3 months. This implies that we use 3 month lagged

information to estimate MPPMs to mitigate the look-ahead bias. We label this strategy as a

feasible, and compare its performance to baseline conditional MPPM strategy�s performance

ignoring the share restrictions.

[Insert Figure 3 here]
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Figure 3 highlights the impact of share restrictions on the rebalancing possibilities. It

shows the cumulative returns are signi�cantly higher for the strategies that ignores the share

restrictions that hinder rebalancing in practise. More formally, Table 5 presents the results

for the feasible conditional MPPM strategies. The results show that feasible conditional

strategies deliver signi�cant performance predictability at semi-annual horizons. However,

when the portfolios are rebalanced at annual horizons, we then cannot document any evidence

about the performance predictability.

[Insert Table 5 here]

Table 5 show economically and statistically signi�cant performance for a feasible con-

ditional MPPM strategy. Speci�cally, the top decile portfolio�s performance is outstanding

and only slightly lower compared to the baseline case ignoring the share restrictions. Also,

the spreads between top and bottom deciles are statistically signi�cant suggesting that per-

formance can be predicted at the semi-annual horizons even though the impact of share

restriction is taken into account. In contrast, Table 5 provides clear evidence that there is no

performance predictability at annual horizons. The performance of decile portfolios seems

to be random. Indeed, some of the top decile portfolios deliver lower performance than the

bottom ones. However, none of the spread is statistically signi�cant.

Taken together, we document that both conditional MPPM strategies provides superior

at semi-annual horizons. The annual performance predictability vanishes when the realistic

portfolio rebalancing are implemented.

3.6 MPPM vs. other measures

To compare performance persistence of the MPPM strategy to the other famous ways to rank

investment managers, we conduct the persistence tests based on the Fung and Hsieh (2004)

alpha, its t-statistic, and R2 as well as the Sharpe ratio. We opt these performance measures,

since it is standard practice in literature to use the t-statistic of alpha in persistence tests.

In a recent study, Titman and Tiu (2010) show that a low R2 respect to systematic risk
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factors is associated with superior future performance.5 The Sharpe ratio is the most used

performance measure among practitioners, and therefore, investment managers would like

to deliver a superior Sharpe ratio for their investors.

[Insert Table 6 here]

Table 6 presents the performance persistence tests based on these four measures. The

�ndings in Table 6 suggest that none of the strategies are capable to deliver such an out-

standing performance over the conditional MPPM strategy. The magnitude of performance

based on there four measures is similar to the one obtained using the unconditional MPPM

strategy. Somehow this is not surprising, since the strategies do not rely on macroeconomic

information, which has been proven to be important in predicting hedge fund future per-

formance. However, it is not straightforward to incorporate macroeconomic information in

estimating performance measures accurately. As a future extension, we consider to compare

the performance of the conditional MPPM strategy to the performance of other conditional

strategies, for example, those proposed by Avramov, Kosowski, Naik and Teo (2010), and

Avramov, Barras, and Kosowski (2012) as well as Kosowski, Naik and Teo (2007).

4 Conclusions

In this paper, we analyze the economic and the statistical properties of the MPPM proposed

by Goeztmann, Ingersoll, Spiegel, and Welch (2007). In particular, we propose a novel

nonparametric way to incorporate macroeconomic information into the accurate estimation

of conditional MPPMs. Our approach extends as well as exploits the recent developments in

nonparametric estimation methods that are used in portfolio choice literature. Using a large

consolidated hedge fund database, we demonstrate that a strategy based on the standard

MPPM delivers poor out-of-the sample performance with signi�cant downside risk. However

5In unreported robustness tests we examine the performance persistence tests based on the Strategy
Distinctness Index (SDI) proposed by Sun, Wang, and Zheng (2011). Given that the SDI is closely related
to R2 we opt to show only the results for R2 in Table 6.
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when we allow the hedge fund�s MPPMs vary nonparametrically based on macroeconomic

state, we �nd that our novel conditional strategy delivers outstanding performance with

insigni�cant tail risk. Importantly, from a practical point of view, we demonstrate that our

�ndings are robust across hedge fund size groups as well as redemption restrictions associated

with portfolio rebalancing. We are currently working on an revision of this paper in which

we aim at linking MPPM measures to option based risk taking. Using a unique data about

hedge fund option holdings, we expect to �nd a link between �information less�performance

manipulation and usage of certain types of options.
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Figure 1: Cumulative Returns to top decile MPPM portfolios
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Figure 2 Panel A: Impact of fund size: Conditional MPPM portfolios

Large funds: Conditional MPPM
Medium funds: Conditional MPPM
Small funds: Conditional MPPM
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Figure 2 Panel B: Impact of fund size: Conditional standardized MPPM portfolios

Large funds: Conditional Standardized MPPM
Medium funds: Conditional Standardized MPPM
Small funds: Conditional Standardized MPPM
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Figure 3 Panel A: Impact of share restrictions and rebalancing: Conditional MPPM portfolios

Feasible Semi−annual Rebalancing (Conditional MPPM)
Baseline Semi−annual Rebancing (Conditional MPPM
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Figure 3 Panel A: Impact of share restrictions and rebalancing: Conditional Standardized MPPM portfolios

Feasible Semi−annual Rebalancing (Conditional Standardized MPPM)
Baseline Semi−annual Rebancing (Conditional Standardized MPPM



MPPM Stand-MPPM C-MPPM C-Stand-MPPM t-stat of alpha

Mean Std

MPPM 2.48% pa 4.85 1.00 0.66 0.26 0.21 0.46
Stand-MPPM 0.85 1.78 0.66 1.00 0.21 0.44 0.78
C-MPPM 3.89% pa 3.34 0.26 0.21 1.00 0.61 0.17
C-Stand-MPPM 0.59 2.30 0.21 0.44 0.61 1.00 0.37
t-stat of alpha 0.80 1.51 0.46 0.78 0.17 0.37 1.00

Table 1:Descriptive statistics for MPPMs

The Table presents the descriptive statistics for performance measures. MPPM is the manipulation-proof performance measure based on Goetzmann, Ingersoll,
Spiegel, and Welch (2007) with a risk-aversion of 3. Stand. MPPM is the Standardized manipulation-proof performance measure defined as MPPM divided by its
Standard error. C-MPPM is the conditional MPPM, while C-Stand-MPPM is the Standardized version of conditional MPPM. We use non-parametric kernel
regression to estimate conditional MPPM measures with all the available return observations. As macro economic variables, we use term spread, default spread,
volatility, dividend yield, TED spread and aggregate flow. t-stat of Alpha is defined using the Fung-Hsieh (2004) model, which uses as factors: S&P500 return
minus risk-free rate, Wilshire small cap minus large cap return, excess return on the 10-year Treasury (BD10RET), the return spread of Moody's Baa minus 10-year
Treasury, bond PTFS, currency PTFS, and commodities PTFS, where PTFS is primitive trend following strategy. Mean and Std are cross-sectional average and
Standard deviation across respective performance measure. Corr is the rank correlation between performance measures.

Rank Correlation



Panel A: Basic statistics for performance measures
Decile MPPM Stand. MPPM ES Alpha t-stat IR Mean Std Sharpe

1 4.70 1.22 5.54 6.71 2.19 0.73 8.53 12.96 0.66

2 5.52 2.25 3.62 5.20 3.08 0.92 7.10 8.15 0.87

3 4.81 2.67 2.92 4.04 3.84 1.07 5.68 5.93 0.96

4 4.13 2.08 3.31 3.30 3.52 0.97 5.06 6.04 0.84

5 3.90 2.06 3.30 2.93 2.94 0.92 4.70 5.54 0.85

6 3.90 1.96 3.69 2.91 2.69 0.90 4.72 5.57 0.85

7 3.89 1.73 4.42 2.82 2.16 0.73 4.97 6.38 0.78

8 4.18 1.53 5.38 3.28 1.94 0.68 5.72 7.60 0.75

9 4.86 1.55 6.07 4.16 2.18 0.73 6.98 8.92 0.78

10 3.03 0.62 9.43 3.51 1.17 0.38 7.69 13.19 0.58

10-1 -1.67 -0.60 3.89 -3.20 -1.02 -0.35 -0.84 0.23 -0.08

t-stat -0.38 -0.78 -0.88 -0.20 -0.26

Panel B: Hedge funds sorted on standardized MPPMs for proceeding 24 months
Decile MPPM Stand. MPPM ES Alpha t-stat IR Mean Std Sharpe

1 2.47 0.87 4.40 3.12 1.43 0.48 4.40 9.02 0.49

2 5.65 2.15 3.87 5.67 3.06 0.96 7.55 8.90 0.85

3 6.16 2.57 3.93 5.65 3.99 1.08 7.76 8.07 0.96

4 5.31 1.99 4.60 4.87 3.72 1.03 7.10 8.44 0.84

5 3.69 1.31 5.16 2.78 1.92 0.56 5.53 8.46 0.65

6 4.85 1.72 5.37 3.93 2.62 0.80 6.70 8.42 0.80

7 3.53 1.24 5.52 2.57 1.71 0.55 5.27 8.07 0.65

8 3.45 1.19 5.67 2.50 1.46 0.51 5.11 7.82 0.65

9 4.07 1.41 5.61 3.07 1.68 0.60 5.66 7.67 0.74

10 5.64 3.25 3.25 4.78 3.68 1.46 6.20 4.49 1.38

10-1 3.17 2.38 -1.15 1.66 2.25 0.98 1.80 -4.53 0.89

t-stat 1.28 0.71 1.81 0.69 1.80

Table 2: Persistence tests for sorts on unconditional MPPMs

Hedge funds are sorted on January 1 each year (from 1996 to 2010) into portfolios, based on their MPPM and standardized MPPM. We use the most recent 24 months of
return observations preceding the evaluation period for the MPPM estimation. The portfolios are equally weighted monthly, so the weights are readjusted whenever a fund
disappears. Funds with the highest past two-year MPPM or standardized MPPM comprise decile 10, and funds with the lowest comprise decile 1. MPPM is the
manipulation-proof performance measure based on Goetzmann, Ingersoll, Spiegel, and Welch (2007) with risk-aversion of three. Stand. MPPM is the standardized
manipulation-proof performance measure defined as MPPM divided by its standard error. ES is the monthly empirical expected shortfall at 95 percent level. Alpha, t-stat
and IR are estimated using the Fung-Hsieh (2004) model, and they are defined as the annualized intercept of the regression model, t-statistic of intercept, and annualized
intercept divided by the standard deviation of residual term. The factors of the augmented model are S&P 500 return minus risk-free rate, Wilshire small cap minus large
cap return, excess return on the 10-year Treasury (BD10RET), the return spread of Moody's Baa minus 10-year Treasury, bond PTFS, currency PTFS, and commodities
PTFS, where PTFS is primitive trend following strategy. Mean, Std and Sharpe are annualized mean return, standard deviation and Sharpe ratio of respective portfolio.



Panel A: Hedge funds sorted on conditional MPPMs
Decile MPPM Stand. MPPM ES Alpha t-stat IR Mean Std Sharpe

1 -0.95 -0.20 8.92 0.45 0.17 0.05 3.67 13.60 0.27
2 1.87 0.57 6.29 1.50 0.94 0.29 4.01 9.09 0.44
3 2.36 0.92 4.73 1.45 1.21 0.39 3.65 7.05 0.52
4 2.84 1.23 4.55 1.74 1.52 0.53 3.89 6.33 0.61
5 4.19 2.21 3.32 3.24 3.62 1.11 4.95 5.43 0.91
6 4.53 2.82 2.87 3.66 4.28 1.20 5.17 4.98 1.04
7 5.95 3.41 3.09 4.94 5.16 1.48 6.77 5.63 1.20
8 5.81 2.87 3.54 4.97 4.08 1.22 6.85 6.34 1.08
9 6.72 2.57 4.86 5.99 3.87 1.14 8.51 8.33 1.02
10 8.65 2.32 6.65 9.80 3.23 0.95 12.87 13.09 0.98

10-1 9.61 2.52 -2.27 9.34 3.06 0.90 9.21 -0.51 0.71
t-stat 2.48 2.74 2.43 2.35 2.40

Panel B: Hedge funds sorted on standardized conditional MPPMs
Decile MPPM Stand. MPPM ES Alpha t-stat IR Mean Std Sharpe

1 -1.49 -0.42 7.11 -1.34 -0.62 -0.20 1.02 9.91 0.10
2 2.52 0.82 5.74 2.15 1.37 0.45 4.46 8.67 0.51
3 2.49 0.91 4.97 1.93 1.54 0.45 4.16 8.09 0.51
4 4.01 1.43 5.17 3.31 2.44 0.76 5.76 8.24 0.70
5 4.83 1.79 4.98 4.00 3.39 0.95 6.57 8.24 0.80
6 5.45 2.28 4.16 4.67 3.91 1.07 6.98 7.79 0.90
7 5.43 2.19 4.40 4.45 3.52 1.01 6.93 7.66 0.90
8 5.64 2.22 4.33 4.76 3.03 0.91 7.16 7.73 0.93
9 7.24 3.16 4.15 6.56 3.79 1.23 8.58 7.19 1.19
10 8.05 5.69 2.39 7.22 5.89 1.91 8.65 4.69 1.84

10-1 9.55 6.11 -4.72 8.56 6.51 2.11 7.62 -5.22 1.74
t-stat 3.03 3.92 3.97 2.58 3.77

Table 3: Persistence tests for sorts on conditional MPPMs

Hedge funds are sorted on January 1 each year (from 1996 to 2010) into portfolios, based on their conditional MPPM and its standardized version. We use non-parametric
kernel regression to estimate conditional MPPM measures with all the available return observations. As macro economic variables, we use term spread, default spread,
volatility, dividend yield, TED spread and aggregate flow. The portfolios are equally weighted monthly, so the weights are readjusted whenever a fund disappears. Funds with
the highest conditional MPPM comprise decile 10, and funds with the lowest comprise decile 1. MPPM is the manipulation-proof performance measure based on Goetzmann,
Ingersoll, Spiegel, and Welch (2007) with risk-aversion of 3. Stand. MPPM is the standardized measure defined as the MPPM divided by its standard error. ES is the
monthly empirical expected shortfall at 95 percent level. Alpha , t-stat and IR are estimated using the Fung-Hsieh (2004) model, and they are defined as the annualized
intercept of the regression model, t -statistic of intercept, and annualized intercept divided by the standard deviation of residual term. Mean , Std and Sharpe are annualized
mean return, standard deviation and Sharpe ratio of respective portfolio.



Panel A: Hedge funds sorted on Conditional MPPMs

Decile MPPM Stand. MPPM ES MPPM Stand. MPPM ES MPPM Stand. MPPM ES

1 -3.25 -0.73 9.16 -0.89 -0.18 9.69 -1.36 -0.28 9.29

2 -0.64 -0.19 6.59 2.28 0.69 6.51 3.05 1.05 5.26

3 0.54 0.20 5.52 2.09 0.76 5.53 3.34 1.46 4.28

4 1.97 0.82 4.84 2.98 1.12 5.15 2.89 1.56 3.46

5 3.21 1.67 3.60 3.99 2.08 3.35 4.24 2.55 2.84

6 4.10 2.52 3.10 4.13 2.19 3.55 4.98 3.42 2.42

7 4.54 2.41 3.90 6.22 3.70 2.54 5.14 3.15 2.88

8 4.49 1.93 4.86 5.11 2.63 3.76 5.82 2.75 3.99

9 5.21 2.05 4.77 6.15 2.44 5.00 7.38 2.90 4.72

10 5.56 1.36 8.04 7.36 1.85 7.40 11.26 3.65 5.32

10-1 8.81 2.09 -1.12 8.25 2.03 -2.29 12.62 3.93 -3.97

t-stat 2.32 1.91 2.81

Decile Alpha t-stat IR Alpha t-stat IR Alpha t-stat IR

1 -2.32 -0.99 -0.29 0.35 0.12 0.04 1.96 0.54 0.17

2 -1.09 -0.64 -0.21 1.82 1.20 0.36 3.52 1.74 0.52

3 -0.70 -0.52 -0.18 1.32 1.08 0.33 2.89 1.73 0.57

4 0.85 0.63 0.25 2.23 1.63 0.59 1.98 1.87 0.57

5 2.37 2.41 0.72 3.23 3.42 0.97 3.57 3.32 0.98

6 3.26 3.44 1.02 3.31 3.35 0.97 4.51 4.95 1.34

7 3.57 2.91 0.96 5.45 5.32 1.51 4.31 3.67 1.01

8 3.67 2.56 0.77 4.44 4.10 1.15 5.39 3.80 1.16

9 4.32 2.55 0.75 5.43 3.59 1.05 7.53 3.62 1.07

10 6.46 1.95 0.60 9.16 2.90 0.85 13.00 4.62 1.25

10-1 8.78 3.54 1.04 8.80 2.78 0.81 11.04 4.08 1.08

t-stat 2.60 2.41 2.29 1.87 2.88 2.91

Medium hedge funds Small hedge funds

Large hedge funds Medium hedge funds Small hedge funds

Table 4: Impact of hedge fund size on persistence tests based on MPPMs 

Hedge funds are categorized on three groups based on fund size. Size groups are formed on a yearly basis in each December. Within size categories hedge are sorted on
January 1 each year (from 1996 to 2010) into portfolios, based on their conditional MPPM and standardized conditional MPPM. We use non-parametric kernel regression
to estimate conditional MPPMs with all the available return observations. As macro economic variables, we use term spread, default spread, volatility, dividend yield, TED
spread and aggregate flow. The portfolios are equally-weighted monthly, so the weights are readjusted whenever a fund disappears. Funds with the highest MPPM comprise
decile 10, and funds with the lowest comprise decile 1. MPPM is the manipulation-proof performance measure based on Goetzmann, Ingersoll, Spiegel, and Welch (2007).
Stand. MPPM is standardized manipulation-proof performance measure defined as MPPM divided by its standard error. ES is the monthly empirical expected shortfall at
95 percent level. Alpha , t-stat and IR are estimated using the augmented Fung-Hsieh (2004) model, and they are defined as the annualized intercept of the regression
model, t -statistic of intercept, and annualized intercept divided by the standard deviation of residual term. Mean , Std and Sharpe are annualized mean return, standard
deviation and Sharpe ratio of respective portfolio.

Large hedge funds



Decile Mean Std Sharpe Mean Std Sharpe Mean Std Sharpe

1 0.81 12.47 0.07 3.87 13.71 0.28 4.86 16.05 0.30

2 1.38 8.71 0.16 4.56 9.44 0.48 5.30 9.61 0.55

3 1.92 7.20 0.27 3.66 7.82 0.47 4.58 7.06 0.65

4 3.00 6.17 0.49 4.29 7.04 0.61 3.75 5.84 0.64

5 3.97 5.40 0.74 4.83 5.75 0.84 4.96 5.35 0.93

6 4.68 4.73 0.99 4.97 5.73 0.87 5.63 5.04 1.12

7 5.38 5.63 0.95 7.04 5.68 1.24 6.06 6.08 1.00

8 5.74 6.87 0.84 6.14 6.32 0.97 7.07 7.03 1.01

9 6.94 8.27 0.84 7.91 8.29 0.95 9.56 9.35 1.02

10 10.16 13.60 0.75 12.07 13.81 0.87 15.14 12.66 1.20

10-1 9.35 1.13 0.68 8.21 0.10 0.59 10.27 -3.39 0.90

t-stat 2.48 2.27 1.91 2.05 2.23 2.81

Panel B: Hedge funds sorted on conditional standardized MPPMs 

Decile MPPM Stand. MPPM ES MPPM Stand. MPPM ES MPPM Stand. MPPM ES

1 -1.43 -0.41 7.35 -1.34 -0.37 7.44 -3.41 -0.91 7.45

2 0.18 0.06 5.71 2.62 0.79 6.40 1.80 0.58 5.49

3 0.41 0.13 6.23 1.95 0.65 5.82 3.81 1.49 5.39

4 1.29 0.40 6.66 4.55 1.58 5.15 4.74 2.10 3.95

5 2.81 1.06 5.02 4.88 1.73 4.90 6.24 2.58 4.07

6 4.51 1.94 4.17 5.12 1.91 4.74 5.18 2.31 3.91

7 3.90 1.54 4.79 4.45 1.74 4.88 6.08 2.47 4.05

8 4.32 1.52 5.42 5.69 2.47 4.02 5.60 2.26 4.20

9 5.54 2.35 4.35 6.59 3.14 3.89 7.61 3.54 4.03

10 6.60 5.15 2.33 7.51 4.18 3.17 10.95 6.54 2.46

10-1 8.02 5.56 -5.02 8.85 4.55 14.36 7.45 -4.99

t-stat 2.70 2.66 3.71

Large hedge funds Medium hedge funds Small hedge funds

Large hedge funds Medium hedge funds Small hedge funds



Decile Alpha t-stat IR Alpha t-stat IR Alpha t-stat IR

1 -1.44 -0.70 -0.23 -1.32 -0.62 -0.19 -2.29 -0.85 -0.27

2 -0.23 -0.17 -0.05 2.32 1.41 0.46 2.26 0.82 0.28

3 -0.10 -0.06 -0.02 1.52 1.05 0.32 3.82 2.14 0.63

4 0.64 0.38 0.13 4.12 3.17 0.90 4.41 3.11 0.85

5 1.69 1.34 0.37 4.27 3.49 0.99 6.04 3.64 1.13

6 3.46 2.67 0.76 4.60 3.43 0.95 4.66 3.40 0.93

7 2.66 1.82 0.59 3.69 2.89 0.79 6.31 3.61 1.06

8 3.27 1.71 0.55 4.95 3.35 0.98 5.28 3.06 0.88

9 4.70 2.53 0.89 5.90 4.20 1.25 7.73 3.97 1.17

10 5.77 5.30 1.82 6.90 4.30 1.39 10.66 6.78 1.96

10-1 7.20 2.05 8.22 1.59 12.95 2.24

t-stat 3.65 3.66 3.17 3.40 4.41 4.30

Decile Mean Std Sharpe Mean Std Sharpe Mean Std Sharpe

1 0.93 9.42 0.10 1.28 10.15 0.13 -0.28 11.11 -0.03

2 1.86 8.06 0.23 4.86 9.22 0.53 4.31 10.31 0.42

3 2.48 8.91 0.28 4.00 8.95 0.45 5.73 8.75 0.66

4 3.43 8.95 0.38 6.51 8.76 0.74 6.26 7.84 0.80

5 4.42 7.93 0.56 6.62 8.23 0.80 7.81 7.94 0.98

6 5.84 7.26 0.81 6.95 8.56 0.81 6.69 7.83 0.85

7 5.23 7.13 0.73 6.15 8.16 0.75 7.97 8.81 0.91

8 6.04 8.15 0.74 7.02 7.20 0.97 7.39 8.46 0.87

9 6.70 6.62 1.01 7.83 6.98 1.12 9.29 8.17 1.14

10 7.02 3.92 1.79 8.43 5.98 1.41 12.03 6.46 1.86

10-1 6.09 1.70 7.15 1.28 12.31 1.89

t-stat 2.21 3.30 2.24 3.27 3.41 4.03

Large hedge funds Medium hedge funds Small hedge funds

Large hedge funds Medium hedge funds Small hedge funds



Panel A: Hedge funds sorted on Conditional MPPMs

Decile MPPM Stand. MPPM ES Alpha t-stat IR Mean Std Sharpe

1 -1.99 -0.38 8.21 -0.63 -0.20 -0.07 2.74 13.49 0.20

2 2.27 0.82 4.78 1.92 1.04 0.34 3.96 8.25 0.48

3 2.55 1.12 3.99 1.70 1.23 0.39 3.67 6.66 0.55

4 3.06 1.48 3.78 1.99 1.62 0.54 3.94 5.82 0.68

5 3.43 1.90 3.03 2.33 2.18 0.73 4.10 5.09 0.81

6 3.87 2.08 3.25 2.77 2.50 0.83 4.59 5.25 0.87

7 4.93 2.78 3.11 3.91 3.96 1.12 5.72 5.54 1.03

8 5.64 2.72 3.88 4.62 3.67 1.09 6.73 6.51 1.03

9 5.88 2.30 4.72 5.13 3.19 0.93 7.60 8.23 0.92

10 8.37 2.33 6.43 8.95 3.26 0.98 12.12 12.21 0.99

10-1 10.37 2.71 -1.78 9.59 3.46 1.05 9.39 -1.28 0.79

t-stat 2.33 2.50 2.34 2.32 2.49

Decile MPPM Stand. MPPM ES Alpha t-stat IR Mean Std Sharpe

1 -4.29 -0.92 9.04 -2.77 -1.04 -0.32 0.39 13.57 0.03

2 1.14 0.41 5.46 1.05 0.66 0.20 2.93 8.43 0.35

3 1.33 0.55 4.50 0.62 0.49 0.16 2.50 6.72 0.37

4 2.37 1.24 3.62 1.61 1.62 0.50 3.16 5.57 0.57

5 3.77 2.07 3.30 2.85 3.05 0.97 4.46 5.16 0.86

6 5.01 3.07 2.71 4.10 4.88 1.40 5.62 4.85 1.16

7 6.21 3.44 3.14 5.08 4.90 1.50 7.00 5.49 1.27

8 7.19 3.25 3.85 6.25 4.82 1.52 8.35 6.66 1.25

9 8.60 3.01 5.25 7.77 4.16 1.32 10.68 8.92 1.20

10 10.51 2.26 8.85 11.62 3.33 1.07 15.90 14.53 1.09

10-1 14.80 3.18 -0.19 14.39 4.37 1.39 15.51 0.96 1.06

t-stat 3.42 3.51 3.18 3.61 3.23

Baseline Semi-annual rebalancing

Table 5: Impact of share restrictions and rebalancing horizons on persistence tests

Performance persistence tests based on a (i) semi-annual and (ii) annual rebalancing horizons. Within each rebalancing horizon decile porfolios are formed using only the
feasible information taking into account fund-specifice share restrictions. For the feasible semi-annual (annual) rebalancing strategy, we exclude the funds with redemption and
lockup periods longer that 6 (12) months. In addition, we exclude funds having notice periods longer than 3 months. This implies that we use 3 month lagged information to
estimate MPPMs to mitigate look-ahead bias. We label the strategy to feasible , and compare its performance to baseline strategy's performance ignoring the share restrictions.
The portfolios are equally-weighted monthly, so the weights are readjusted whenever a fund disappears. Funds with the highest MPPM comprise decile 10, and funds with the
lowest comprise decile 1. MPPM is the manipulation-proof performance measure based on Goetzmann, Ingersoll, Spiegel, and Welch (2007). Stand. MPPM is the standardized
manipulation-proof performance measure defined as MPPM divided by its standard error. ES is the monthly empirical expected shortfall at 95 percent level. Alpha , t-stat  and 
IR are estimated using the Fung-Hsieh (2004) model, and they are defined as the annualized intercept of the regression model, t -statistic of intercept, and annualized intercept
divided by the standard deviation of residual term.  Mean , Std  and Sharpe  are the annualized mean return, standard deviation and Sharpe ratio of the respective portfolio.

Feasible Semi-annual rebalancing taking into account share restrictions



Decile MPPM Stand. MPPM ES Alpha t-stat IR Mean Std Sharpe

1 3.25 0.81 6.30 5.78 2.01 0.69 7.19 12.94 0.56

2 4.43 1.66 4.09 4.60 2.75 0.92 6.02 8.12 0.74

3 4.16 1.82 3.70 3.95 2.89 0.97 5.29 6.70 0.79

4 4.29 2.15 3.21 3.41 3.39 1.00 5.11 5.71 0.90

5 4.24 2.14 3.29 3.24 3.16 1.06 5.01 5.43 0.92

6 3.75 1.91 3.55 2.75 2.36 0.83 4.51 5.41 0.83

7 4.38 1.89 4.77 3.31 2.31 0.85 5.44 6.29 0.87

8 4.86 2.02 4.54 3.97 2.54 0.87 6.13 6.97 0.88

9 3.11 0.97 6.28 2.65 1.27 0.44 5.25 9.04 0.58

10 0.81 0.15 10.32 1.93 0.53 0.19 5.82 13.42 0.43

10-1 -2.44 -0.66 4.02 -3.86 -1.48 -0.50 -1.37 0.48 -0.13

t-stat -0.48 -0.85 -1.15 -0.29 -0.36

Decile MPPM Stand. MPPM ES Alpha t-stat IR Mean Std Sharpe

1 -0.95 -0.20 8.92 0.45 0.17 0.05 3.67 13.60 0.27

2 1.87 0.57 6.29 1.50 0.94 0.29 4.01 9.09 0.44

3 2.36 0.92 4.73 1.45 1.21 0.39 3.65 7.05 0.52

4 2.84 1.23 4.55 1.74 1.52 0.53 3.89 6.33 0.61

5 4.19 2.21 3.32 3.24 3.62 1.11 4.95 5.43 0.91

6 4.53 2.82 2.87 3.66 4.28 1.20 5.17 4.98 1.04

7 5.95 3.41 3.09 4.94 5.16 1.48 6.77 5.63 1.20

8 5.81 2.87 3.54 4.97 4.08 1.22 6.85 6.34 1.08

9 6.72 2.57 4.86 5.99 3.87 1.14 8.51 8.33 1.02

10 8.65 2.32 6.65 9.80 3.23 0.95 12.87 13.09 0.98

10-1 9.61 2.52 -2.27 9.34 3.06 0.90 9.21 -0.51 0.71

t-stat 2.48 2.74 2.43 2.35 2.40

Baseline Annual rebalancing

Feasible Annual rebalancing taking into account share restrictions



Panel B: Hedge funds sorted on standardized conditional MPPMs

Decile MPPM Stand. MPPM ES Alpha t-stat IR Mean Std Sharpe

1 -0.96 -0.28 5.86 -1.29 -0.54 -0.20 0.94 8.39 0.11

2 0.52 0.18 5.23 0.21 0.11 0.04 2.22 8.11 0.27

3 2.88 1.04 4.90 2.44 1.47 0.45 4.67 8.48 0.55

4 4.24 1.63 4.50 3.36 2.21 0.66 5.83 7.97 0.73

5 5.28 2.01 4.32 4.51 3.12 0.95 6.85 7.84 0.87

6 5.41 2.13 4.29 4.41 3.26 0.99 6.95 7.78 0.89

7 5.64 2.35 4.38 4.70 3.20 0.98 7.11 7.60 0.94

8 5.97 2.52 4.22 5.24 3.32 1.04 7.44 7.62 0.98

9 5.26 2.40 4.12 4.28 2.76 0.84 6.53 7.01 0.93

10 5.87 3.53 3.11 4.74 4.31 1.28 6.52 4.98 1.31

10-1 6.83 3.81 -2.75 6.03 4.85 1.48 5.58 -3.41 1.20

t-stat 2.62 2.94 3.32 2.46 3.57

Decile MPPM Stand. MPPM ES Alpha t-stat IR Mean Std Sharpe

1 -4.39 -1.24 6.70 -3.88 -1.76 -0.58 -1.92 9.72 -0.20

2 1.13 0.41 5.39 0.71 0.47 0.14 2.92 8.43 0.35

3 2.48 1.01 4.40 1.97 1.51 0.44 3.96 7.67 0.52

4 3.46 1.31 4.76 2.86 2.17 0.65 5.03 7.85 0.64

5 5.01 2.11 4.01 4.37 3.70 1.02 6.50 7.71 0.84

6 5.82 2.27 4.53 4.92 3.67 1.08 7.36 7.83 0.94

7 6.19 2.25 5.01 5.18 3.57 1.11 7.82 7.94 0.99

8 6.53 2.17 5.48 5.54 2.87 0.95 8.51 8.69 0.98

9 8.91 3.73 4.47 8.12 4.54 1.46 10.40 7.54 1.38

10 9.52 5.76 3.22 8.37 6.47 2.14 10.27 5.21 1.97

10-1 13.91 7.00 -3.48 12.26 8.23 2.72 12.19 -4.51 2.17

t-stat 4.66 5.32 4.37 4.36 4.14

Feasible Semi-annual rebalancing taking share restrictions into account

Baseline Semi-annual rebalancing



Decile MPPM Stand. MPPM ES Alpha t-stat IR Mean Std Sharpe

1 2.37 1.00 4.08 2.86 1.77 0.58 3.72 7.43 0.50

2 2.82 1.11 4.40 3.19 1.91 0.65 4.33 7.79 0.56

3 3.94 1.40 4.81 4.19 2.38 0.81 5.76 8.57 0.67

4 5.56 2.04 4.53 5.27 3.67 1.13 7.23 8.17 0.88

5 6.17 2.23 4.52 5.62 4.02 1.21 7.90 8.29 0.95

6 5.14 1.85 5.10 4.41 3.19 0.97 6.90 8.30 0.83

7 5.24 1.78 5.57 4.43 2.57 0.89 6.99 8.19 0.85

8 3.37 1.11 6.12 2.39 1.22 0.46 5.10 7.97 0.64

9 3.03 1.04 5.73 2.18 1.01 0.38 4.63 7.75 0.60

10 2.20 0.91 5.29 1.07 0.61 0.24 3.21 6.09 0.53

10-1 -0.17 -0.09 1.21 -1.79 -1.16 -0.34 -0.51 -1.34 0.03

t-stat -0.07 -0.85 -0.81 -0.21 0.07

Decile MPPM Stand. MPPM ES Alpha t-stat IR Mean Std Sharpe

1 -1.49 -0.42 7.11 -1.34 -0.62 -0.20 1.02 9.91 0.10

2 2.52 0.82 5.74 2.15 1.37 0.45 4.46 8.67 0.51

3 2.49 0.91 4.97 1.93 1.54 0.45 4.16 8.09 0.51

4 4.01 1.43 5.17 3.31 2.44 0.76 5.76 8.24 0.70

5 4.83 1.79 4.98 4.00 3.39 0.95 6.57 8.24 0.80

6 5.45 2.28 4.16 4.67 3.91 1.07 6.98 7.79 0.90

7 5.43 2.19 4.40 4.45 3.52 1.01 6.93 7.66 0.90

8 5.64 2.22 4.33 4.76 3.03 0.91 7.16 7.73 0.93

9 7.24 3.16 4.15 6.56 3.79 1.23 8.58 7.19 1.19

10 8.05 5.69 2.39 7.22 5.89 1.91 8.65 4.69 1.84

10-1 9.55 6.11 -4.72 8.56 6.51 2.11 7.62 -5.22 1.74

t-stat 3.03 3.92 3.97 2.58 3.77

Feasible Annual rebalancing taking share restrictions into account

Baseline Annual rebalancing



Panel A: Hedge funds sorted on t-statistics of Fung and Hsieh (2004) alpha
Decile MPPM Stand. MPPM ES Alpha t-stat IR Mean Std Sharpe

1 3.02 1.26 4.05 2.96 1.90 0.59 4.53 7.82 0.58
2 4.22 1.81 4.18 4.14 2.92 0.87 5.59 7.39 0.76
3 4.15 1.73 4.25 3.68 2.58 0.75 5.67 7.77 0.73
4 4.47 1.79 4.46 3.69 2.65 0.79 6.00 7.76 0.77
5 3.98 1.45 5.23 3.18 2.31 0.67 5.78 8.36 0.69
6 4.28 1.62 4.91 3.37 2.62 0.75 5.88 7.89 0.75
7 5.38 1.80 5.60 4.48 2.82 0.89 7.33 8.60 0.85
8 3.80 1.27 5.55 2.90 1.94 0.60 5.61 8.29 0.68
9 5.65 2.18 4.73 4.58 3.06 0.95 7.13 7.55 0.94
10 6.62 3.46 3.31 5.48 5.00 1.53 7.39 5.39 1.37

10-1 3.59 2.20 -0.74 2.51 3.10 0.94 2.85 -2.43 0.79
t-stat 2.09 1.63 2.46 1.65 2.37

Panel B: Hedge funds sorted on Fung and Hsieh (2004) alphas
Decile MPPM Stand. MPPM ES Alpha t-stat IR Mean Std Sharpe

1 4.10 1.29 5.24 5.30 2.30 0.72 6.86 10.70 0.64
2 3.79 1.88 3.67 3.22 2.61 0.75 4.91 6.69 0.73
3 3.55 1.84 3.48 3.04 2.61 0.80 4.47 5.98 0.75
4 3.75 1.93 3.77 2.73 2.69 0.84 4.63 5.80 0.80
5 3.66 1.80 3.73 2.68 2.51 0.86 4.50 5.62 0.80
6 3.98 1.85 4.05 2.86 2.68 0.89 4.94 6.00 0.82
7 4.71 2.03 4.38 3.65 3.05 1.01 5.82 6.45 0.90
8 5.05 1.94 5.00 4.12 3.05 0.89 6.62 7.80 0.85
9 5.62 1.79 5.91 4.67 2.70 0.79 7.99 9.66 0.83
10 5.82 1.32 7.92 6.23 2.52 0.71 10.15 13.00 0.78

10-1 1.72 -19.68 -13.08 0.94 0.22 -0.01 3.30 2.30 0.14
t-stat 0.58 0.36 -0.05 1.19 0.59

Table 6: Standard measures and performance persistence

The Table presents the performance persistence based on the standard measures: (i) t-statistic of Fung and Hsieh (2004) alpha, (ii) Fung and Hsieh (2004) alpha, (iii)
Sharpe, and (iv) R-square of Fung and Hsieh (2004) model. Hedge funds are sorted on January 1 each year (from 1996 to 2010) into portfolios, based on the respective
measures. We use the most recent 24 months of return observations preceding the evaluation period for the performance measure estimation. The portfolios are equally
weighted monthly, so the weights are readjusted whenever a fund disappears. Funds with the highest performance measure comprise decile 10, and funds with the lowest
comprise decile 1. MPPM is the manipulation-proof performance measure based on Goetzmann, Ingersoll, Spiegel, and Welch (2007). Stand. MPPM is the standardized
manipulation-proof performance measure defined as MPPM measure divided by its standard error. ES is the monthly empirical expected shortfall at 95 percent level. Alpha , 
t-stat and IR are estimated using the Fung-Hsieh (2004) model, and they are defined as the annualized intercept of the regression model, t-statistic of intercept, and
annualized intercept divided by the standard deviation of residual term. Mean , Std and Sharp e are the annualized mean return, standard deviation and Sharpe ratio of the
respective portfolio.



Panel C: Hedge funds sorted on Sharpe ratios
Decile MPPM Stand. MPPM ES Alpha t-stat IR Mean Std Sharpe

1 1.87 0.79 3.53 1.64 0.95 0.32 3.05 7.04 0.43
2 5.20 2.03 3.96 5.43 2.98 0.93 6.93 8.47 0.82
3 5.35 2.41 3.55 4.92 3.52 1.02 6.73 7.47 0.90
4 5.96 2.43 4.08 5.48 3.98 1.09 7.62 8.19 0.93
5 4.73 1.61 5.22 4.10 2.86 0.82 6.73 8.81 0.76
6 4.36 1.51 5.60 3.48 2.33 0.69 6.31 8.70 0.73
7 4.59 1.62 5.53 3.71 2.52 0.76 6.44 8.40 0.77
8 3.36 1.08 6.09 2.51 1.36 0.47 5.34 8.58 0.62
9 3.82 1.17 6.33 3.00 1.48 0.53 5.77 8.48 0.68
10 5.43 2.87 3.63 4.50 3.28 1.22 6.14 5.12 1.20

10-1 3.57 2.08 0.10 2.86 2.33 0.90 3.09 -1.92 0.77
t-stat 1.66 1.37 1.79 1.39 1.83

Panel D: Hedge funds sorted on R-squares of Fung and Hsieh (2004) model
Decile MPPM Stand. MPPM ES Alpha t-stat IR Mean Std Sharpe

1 3.23 0.91 6.91 3.64 3.37 0.97 6.40 11.20 0.57
2 5.51 1.92 5.02 5.32 4.05 1.12 7.76 9.52 0.82
3 6.13 2.28 4.46 5.60 4.22 1.15 7.97 8.57 0.93
4 5.18 1.80 4.70 4.82 2.94 0.91 7.07 8.60 0.82
5 5.37 1.87 5.02 4.69 2.92 0.92 7.12 8.22 0.87
6 3.33 1.25 5.17 2.18 1.34 0.45 4.80 7.50 0.64
7 3.98 1.59 4.79 2.91 1.79 0.60 5.29 7.06 0.75
8 4.37 2.06 3.81 3.31 2.29 0.77 5.33 6.01 0.89
9 3.48 1.71 4.09 2.31 1.65 0.59 4.36 5.77 0.75
10 4.20 2.70 2.96 3.45 2.82 1.02 4.70 4.30 1.09

10-1 0.97 1.79 -3.95 -0.19 -0.55 0.05 -1.71 -6.90 0.52
t-stat 0.36 -0.15 0.14 -0.62 1.42
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