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Abstract 

Trading mechanisms, time-varying risk factors and the reaction speed to new market 

information, among other things, promote autocorrelated returns and time-varying higher 

distributional moments of investment opportunities. This study provides a bootstrap approach 

to empirically implementing the cumulative prospect theory (CPT) while considering 

autocorrelation and allowing for time-varying higher distributional moments. An empirical 

analysis reevaluates the effect of myopic loss aversion and shows that the market portfolio 

gains significantly in attractiveness against the risk-free asset when applying the proposed 

approach. This gain in attractiveness is mostly attributed to the time variation of higher 

distributional moments of the market portfolio. Nevertheless, evidence demonstrates that 

more pronounced serial correlation patterns in the return series also affect the attractiveness of 

the market portfolio. Hence, the approach of this study should be applied when, for example, 

evaluating investment opportunities, which are based on time series data using the CPT. 
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1. Introduction 

Stock returns usually exhibit autocorrelation patterns (see, for example, Poterba & Summers 

(1988)) or time-varying higher distributional moments (see, for example, Bollerslev (1986), 

Harvey & Siddique (1999) and Brooks et al. (2005)). Benartzi & Thaler (1995), Durand et al. 

(2004), Zeisberger et al. (2007), Dierkes et al. (2010) and Fong (2013) propose bootstrap 

approaches for empirically implementing the cumulative prospect theory (CPT) given a time 

series of return observations. These approaches either do not allow the consideration of 

autocorrelation in the underlying return series, make subjective and thus unreliable 

assumptions on the serial correlation, or do not allow higher distributional moments to vary 

over time. These three facts raise two issues. First, results are doubtful when applying several 

of these approaches to an autocorrelated return series because Singh (1981) and Babu & 

Singh (1983) found that a bootstrap, which makes erroneous assumptions on the 

autocorrelation of the underlying time series, leads to improper convergence of the moments 

of the bootstrapped statistic. Second, CPT values are likely to be time-varying because CPT 

investors are sensitive to higher distributional moments, which are also time-varying. Ågren 

(2006a) provides evidence that considering for example conditional variance affects CPT 

value estimates whereas Ågren (2006b), Barberis & Huang (2008) and Gregory-Allen et al. 

(2010) show the relationship between CPT values and distributional characteristics such as 

variance, skewness or kurtosis. 

This study therefore aims to identify whether considering autocorrelation in underlying return 

series and time-variation of higher distributional moments affects the CPT value estimates 

and their inference statistics. As such, this study uses an autoregressive (AR) sieve bootstrap 

approach to compute CPT values and their inference statistics for multi-period investment 

horizons. Furthermore, an empirical study compares the procedure of Zeisberger et al. (2007) 

with the proposed approach by reevaluating the effect of myopic loss aversion (see, for 

example, Benartzi & Thaler (1995), Gneezy et al. (2003) and Haigh & List (2005)). This 

effect describes the dependence of the risk perception of CPT investors on the investment 

horizon and provides a possible explanation for the famous equity premium puzzle (see, for 

example, Mehra & Prescott (1985)). 

The empirical analysis of this study shows that the monthly return series of the market 

portfolio bears weak but significant short-term persistence. Furthermore, statistical tests show 

that the empirical second to the fourth central moments of the return distribution of the market 

portfolio are significantly time-varying. Therefore, assessing the attractiveness of the market 

portfolio against the risk-free asset leads to higher CPT values for the former when the 

approach of this study is applied. This additional gain in attractiveness is mainly attributed to 

the consideration of time-varying higher distributional moments. Nevertheless, evidence is 

provided that shows that more pronounced patterns of temporal dependence in the underlying 

return series also significantly affect CPT value estimates and their inference statistics. 

Consequently, both approaches still support the effect of myopic loss aversion. However, 

when applying the approach proposed in this study, the risky market portfolio is less attractive 

at a 95% significance level than the risk-free asset for investment horizons of 1 to 3 months 

and equally attractive for lower evaluation frequencies, against which the procedure of 
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Zeisberger et al. (2007) implies a lower attractiveness for investment horizons of 1 to 6 

months. 

The remainder of this paper is laid out as follows: Section 2 introduces the CPT while Section 

3 provides the AR-sieve bootstrap approach for empirically implementing the CPT. Section 4 

compares the approach of Zeisberger et al. (2007) with the algorithm proposed in this study. 

Section 5 concludes with a summary of the study’s important findings. 

2. Overview of the Cumulative Prospect Theory 

Tversky & Kahneman (1992) developed the CPT by combining the rank-dependent utility 

theory developed by Quiggin (1982) with the prospect theory developed by Kahneman & 

Tversky (1979). 

Let ����, ���; … ; ��	, ��	; �
, �
; �	, �	; … ; ��, ��� be a lottery  with outcomes �� and 

corresponding probabilities ��. Furthermore, �� < ��  for � < � and �
 = 0. Tversky and 

Kahneman (1992) define the CPT value � of a lottery  as follows: 

 ��� = ∑ ����� ⋅ ����� =�
���� ∑ ������ ⋅ ������ +


���� ∑ ������ ⋅ �������
��
  (1) 

Here, ������ and ������ are strictly increasing convex or concave functions that return 

values for the losses and gains of , respectively. Let ����� and ����� be two strictly 

increasing functions that transform the cumulative probabilities ∑� = � of these losses and 

gains. Next, define ������ and ������, respectively, as follows: 

 ������ = ������ +⋯+ ��� − ������ +⋯+ ���	� (2) 

 ������ = ����� +⋯+ ��� − ������	 +⋯+ ��� (3) 

The operations in (2) and (3) are adopted from rank-dependent utility theory. Tversky & 

Kahneman (1992) define ����� and �����, respectively, as follows: 

 ����� = !"#

�!"#��	�!�"#�
$
"#

 (4) 

 ����� = !"%

&!"%��	�!�"%'
$
"%

 (5) 

Using survey data, Tversky & Kahneman (1992) estimate (� and (� to be 0.69 and 0.61, 

respectively. The estimates and functional forms of the transformation functions then lead to 

an overestimation of low probabilities and an underestimation of high probabilities. 

For the value functions, Tversky & Kahneman (1992) propose an unbounded power function 

with a kink at the origin. Therefore, ������ and ������ are, respectively, defined as follows: 

 ������ = −) ⋅ �−���*
#
 (6) 

 ������ = ��*
%
 (7) 
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Tversky & Kahneman (1992) estimate +� and +� equally at 0.88 and the loss aversion ) at 
2.25. Therefore, investors will be risk-seeking for losses and risk-averse for gains when 

evaluating lotteries with (6) and (7). Furthermore, a loss aversion of 2.25 implies that losses 

cost 2.25 times more in disutility than is gained in spending utility. 

3. Implementing the Cumulative Prospect Theory 

Estimating CPT values as in (1) together with their inference statistics for investment 

opportunities at different evaluation frequencies n based on time series data requires n-month 

return distributions. The latter can be obtained empirically by applying a bootstrap to the 

underlying return series. A bootstrap approach should then correctly consider such 

characteristics as return autocorrelation or time-varying higher distributional moments. 

Applying a bootstrap with erroneous assumptions on the temporal dependence structure of the 

underlying return series will likely lead to improper convergence of the estimated moments of 

the distribution of the bootstrapped statistics, as discussed, for example, by Singh (1981) and 

Babu & Singh (1983). Here, the bootstrapped statistic is the n-month return. The resulting n-

month return distribution is the basis for the CPT value estimates and thus, improper 

distributional moments might affect CPT value estimates and in turn their inference statistics. 

Furthermore, allowing for time-varying higher distributional moments, which are discussed, 

for example in Bollerslev (1986), Harvey & Siddique (1999) and Brooks et al. (2005), also 

affects the results. Consequently, when the underlying n-month return distributions vary over 

time it is likely that the CPT values, which are based on these distributions, are also varying. 

The latter relationship is explained by the sensitivity of the CPT investors towards the higher 

moments of a return distribution. This sensitivity is attributed to the probability weighting 

functions in (4) and (5) or to the asymmetric value functions in (6) and (7) as discussed, for 

example, in Ågren (2006b), Barberis & Huang (2008) and Gregory-Allen et al. (2010). 

Benartzi & Thaler (1995) propose a first bootstrap approach to compute CPT values on the 

basis of time series data. From the entire sample of monthly portfolio returns, they draw with 

replacement n single observations and compute the n-month portfolio return. They repeat 

these steps 100,000 times to approximate the portfolio return distribution for an n-month 

investment horizon. This bootstrap approach assumes independently and identically 

distributed returns and does not allow the computation of inference statistics for the estimated 

CPT values. The assumption of independence is not considered very serious by Benartzi & 

Thaler (1995). They argue that the CPT value estimates are not affected by the non-

consideration of possible autocorrelation because the existing temporal dependence seems 

unsubstantial, which is supported in this study by a monthly frequency of the market portfolio 

returns. Instead, it is argued here that time-varying distributional moments affect the results 

substantially. Furthermore, the approach of Benartzi & Thaler (1995) cannot be applied to 

time series where autocorrelation is substantial. 

Another approach is put forward by Durand et al. (2004). However, their method and results 

have been questioned by Zeisberger et al. (2007) because the approach of Durand et al. (2004) 

appears to suffer from miscomputations and a non-transparent description of the method. 
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Nevertheless, Durand et al. (2004) appear to use non-overlapping blocks of monthly returns to 

compute the n-month return distribution. In this way, Durand et al. (2004) obtain a sample of 

independent CPT values, which is a necessary requirement for their computation of inference 

statistics. However, the underlying return series must be sufficiently large to compute reliable 

inference statistics, which is problematic, particularly for long investment horizons. 

Nevertheless, this data structuring allows the return distributions to vary across blocks, 

although return autocorrelation inside individual blocks is still not considered. 

Zeisberger et al. (2007) sample the original return series 5,000 times by drawing with 

replacement and subsequently applying the procedure of Benartzi & Thaler (1995), as 

described above, on each of the resampled series to obtain 5,000 CPT values. The latter 

distribution becomes the basis for computing inference statistics as, for example, in Trede 

(2002). To obtain a point estimate of the CPT value for an n-month evaluation frequency, 

Zeisberger et al. (2007) once again apply the method developed by Benartzi & Thaler (1995) 

to the entire original return series using 1,000,000 repetitions. The approach of Zeisberger et 

al. (2007) allows the computation of inference statistics for the point estimates of the CPT 

values but ultimately, their approach is just a repeated application of the procedure of Benartzi 

& Thaler (1995) and thus leads to the same critique. Zeisberger et al. (2007) also report a 

modification where they draw returns jointly from two time series, but this does not affect the 

results. 

In contrast, Dierkes et al. (2010) and Fong (2013) apply a moving block bootstrap, as in 

Kunsch (1989), to return series. Both studies subjectively choose, on the one hand, the block 

lengths, but on the other hand, they justify their choices with economic reasons such as 

momentum effects. Fong (2013), for example, draws with replacement overlapping blocks of 

60 monthly returns and chains the returns of four of these blocks to obtain a 20-month return. 

Nevertheless, neither study considers block length estimation procedures such as in Politis & 

White (2004). Applying this estimation procedure to the same time series of the approximated 

market portfolio Fong (2013) used leads to a block length of 3 monthly returns in lieu of the 

60 chosen monthly returns. Furthermore, the approaches of Dierkes et al. (2010) and Fong 

(2013) do not explicitly allow for time-varying higher distributional moments and inference 

statistics cannot be computed for the CPT value estimates. 

The above procedures are based on non-parametric bootstraps. In contrast, Ågren (2006a) 

proposes a model-based approach in which he estimates and simulates a generalized 

autoregressive conditional heteroscedasticity process. Consequently, Ågren (2006a) explicitly 

models the time-variation of the variance. Furthermore, he provides no inference statistics and 

focuses on the tail weights of a return distribution, neglecting, for example, possible 

conditional asymmetries or autoregressive mean processes of the time series. Nevertheless, 

Ågren (2006a) demonstrates that the bootstrap approach of Benartzi & Thaler (1995) does not 

correctly depict the distributional properties of the underlying return series and thus, neither 

does the allied approach of Zeisberger et al. (2007). 

This study provides an approach to computing CPT values for multi-period investment 

horizons, which considers return autocorrelation and allows for time-varying higher 

distributional moments. This approach is based on a rolling n-month window consisting of 
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daily returns where the latter are chained to obtain n-month returns. Possible autocorrelation 

in the daily returns in each window is considered with the help of the AR-sieve bootstrap. The 

latter is, for example, discussed in Bühlmann (1997). Therefore, the serial correlation in 

monthly returns is bypassed by switching from a monthly return frequency to a daily return 

frequency to approximate the n-month return distributions. 

Let �,-�-∈ℤ be a strictly stationary return data-generating process of length �, 01 be the 

expected value of ,- and �2-�-∈ℤ be an innovation sequence of random variables, which are 

independently and identically distributed with zero mean. The AR-sieve bootstrap is then 

constructed with an AR-model of conditional order ���� as follows: 

 ,- − 01 = ∑ 3� ⋅ �,-�� − 01� + 2-!�4�
��	  (8) 

Kreiss et al. (2011) suggest using Yule-Walker estimators for the AR-parameters 3� in (8) to 

guarantee that the bootstrapped time series is also stationary. The idea of the AR-sieve 

bootstrap is to approximate a time series with a sequence of finite-dimensional AR-processes 

of order ���� where lim4→9 ���� = ∞ holds. Bühlmann (1997) determines ���� using the 

information criterion of Akaike (1974), which leads to an asymptotically efficient choice �̂ of 

����. Consequently, if �̂ = 0 holds, single return observations are drawn with replacement 

from the original time series, against which, if �̂ > 0 holds, (8) is fitted to the underlying 

return series. The whole time series is then rebuilt according to (8) based on the resampled 

centered residuals, which are computed from � − �̂ estimates of 2-. 

Consequently, let =>�  and =?�  be the first and last trading day, respectively, of one of the 

� = 1, … , � − �A − 1� rolling windows consisting of B� daily returns, and let �C�� be the 

estimate of the CPT value for the ith n-month return distribution of an investment opportunity. 

The AR-sieve bootstrap algorithm (ASBA) can be described as follows: 

1. Choose =>�  and =?�  as the first and last trading day, respectively, of the ith n-month 

window. 

2. Determine �̂ for B� daily returns of the ith n-month window. If �̂ = 0, proceed with 

step 4. If �̂ > 0, estimate the specified AR-model and proceed with step 3. 

3. Draw with replacement centered residuals from the fitted AR-model from step 2. 

Rebuild the original time series of daily returns of the ith n-month window according 

to the fitted AR-model and proceed with step 5. 

4. Resample the original time series by drawing with replacement B� daily returns of the 

ith n-month window. 

5. Compute the n-month portfolio return from the simulated time series by chaining the 

resampled B� daily returns of step 3 or step 4 for the ith n-month window. 

6. Repeat steps 1 through 4 B times and compute �C�� from the resulting empirical n-

month return distribution for the ith n-month window, as in (1). 

Applying the above algorithm leads to the time series �C�� of � − �A − 1� CPT values for 

� = 1, … , � − �A − 1�. This time series represents the distribution of �C�, which denotes the 

overall CPT value of an investment opportunity. The time series �C�� is assumed to better 

depict the distributional properties of the underlying n-month return series than, for example, 
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the approaches of Benartzi & Thaler (1995) or Zeisberger et al. (2007) because step 1 of the 

above algorithm segments the return series into � − �A − 1� periods, which allows the n-

month return distribution to vary across the rolling windows. Consequently, the ASBA 

assesses the attractiveness of investment opportunities with respect to time-varying higher 

distributional moments. Possible autocorrelation in the underlying daily returns is addressed 

through steps 2 and 3. 

The time series �C�� can now be averaged to obtain a point estimate �C� of the overall CPT value 

of an investment opportunity. A general weighting formula for �C� with weight D� is defined as 

follows: 

 �C� =
∑ EF⋅GHIFJ#�I#$�
FK$
∑ EFJ#�I#$�
FK$

 (9) 

When, for example, D� = 1 holds for all �, (9) reduces to the simple arithmetic mean. �C� is 
then the average utility of a CPT investor who has an n-month evaluation frequency and who 

weights equally positive and negative events of past investment periods expressed by �C��. One 

useful feature of this estimator is that other weighting schemes can be implemented in a 

straightforward manner. These schemes are discussed, for example, in Murdoch (1962), 

Kahneman et al. (1993) and Kemp et al. (2008). 

Additionally, with the time series �C��, it is straightforward to compute inference statistics for 

�C�, based, for example, on robust standard errors, as per Andrews (1991). These robust 

standard errors become crucial when A > 1 holds because �C�� is then calculated for rolling 

windows consisting of A − 1 overlapping months of daily returns. 

Nevertheless, there are some drawbacks to the ASBA. For example, T must be sufficiently 

large to evaluate an investment opportunity of a CPT investor with a long investment horizon. 

If, for example, � = A holds, then �C�� consists of a single CPT value. Thus, �C� = �C��. 
Consequently, the ASBA does not allow the computation of inference statistics for �C� due to 

an insufficient number of observations of �C��. 

4. Myopic Loss Aversion Reconsidered 

Benartzi & Thaler (1995) identify the effect of myopic loss aversion. This effect describes the 

dependency of the risk perception of CPT investors on their investment horizon. Benartzi & 

Thaler (1995) observed that the market portfolio is less attractive than the risk-free asset for 

evaluation frequencies of less than 12 months regarding the difference of the respective CPT 

values. This observation provides a possible explanation for the equity premium puzzle 

because investors demand higher risk premiums for shorter investment horizons than 

predicted by rational asset pricing theory. Furthermore, Zeisberger et al. (2007) provide 

inference statistics for the differences of these CPT values. 

Following Barberis & Huang (2008), the empirical analysis of this study focuses on the 

estimated CPT value of the n-month excess return of the market portfolio �C��,LM � instead of 

the difference in the CPT values of the market portfolio and the risk-free asset. Consequently, 
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the null hypothesis �C��,LM � = 0 provides evidence of whether the effect of myopic loss 

aversion exists and whether the market portfolio is in equilibrium for a specific investment 

horizon A. In addition, the empirical analysis compares the results of the ASBA and the 

approach of Zeisberger et al. (2007) because the latter is well documented and allows both the 

estimation of CPT values and their inference statistics. 

4.1 Return Autocorrelation and Time-Varying Higher Distributional Moments 

The website of Kenneth R. French1 provides data for the empirical analysis performed in the 

present study. The market portfolio is approximated by the return series of the value-weighted 

market index ,L from the Center for Research in Security Prices (CRSP) and the risk-free 

asset is approximated by the one-month Treasury bill rate ,>. The analysis starts in January 

1964 and ends in December 2010, producing 564 monthly and 11,833 daily returns. The study 

uses nominal returns following Benartzi & Thaler (1995) and Zeisberger et al. (2007). 

Table 1: Empirical properties of monthly CRSP market portfolio returns 

This table reports, in the upper panel, empirical estimates of the mean (MEA), variance (VAR), skewness (SKE) 

and excess kurtosis (KUR) of ,L from January 1964 to December 2010. The lower panel reports the Ljung-Box 

test statistic NO for the first 7 lags of the autocorrelation function and the value of the first lag of the 

autocorrelation function ACF1 with appropriate p-values in parentheses for each of these statistics. NO and ACF1 

are computed for ,L and for the time series of the empirical central higher moments �P,L∗ , RSTL∗  and SU,L∗  of 

the monthly return distributions of the CRSP market portfolio obtained by the ASBA. 

 

 MEA VAR SKE KUR 

VW 0.009 0.002 -0.548 1.993 

 VW XYVW∗  Z[\W∗  []VW∗  
^_ 8.923 

(0.258) 
270.610 
(0.000) 

108.346 
(0.000) 

118.143 
(0.000) 

ACF1 
0.087 
(0.039) 

0.467 
(0.000) 

0.377 
(0.000) 

0.387 
(0.000) 

 

Table 1 reports empirical, unconditional estimates of the mean (MEA), variance (VAR), 

skewness (SKE) and excess kurtosis (KUR) of ,L. The table uses a monthly evaluation 

frequency because this investment horizon is the basis for the bootstrap approach of 

Zeisberger et al. (2007). Furthermore, Table 1 provides the Ljung-Box test statistic NO, which 

checks if the first 7 lags of the autocorrelation function equal zero as well as the value of the 

first lag of the autocorrelation function ACF1. Appropriate p-values are placed in parentheses 

for each of these statistics. The statistics NO and ACF1 are computed for ,L and for the time 

series of empirical estimates of the central variance �P,L∗ , central skewness RSTL∗  and 

central kurtosis SU,L∗ . These distributional moments are computed based on the empirical 

one-month return distributions obtained in Step 6 of the ASBA, to which 1,000,000 bootstrap 

replications were applied. 

The time series of the CRSP market portfolio returns has a positive MEA and a moderate 

VAR. Although not reported in Table 1, the monthly mean excess market return is 0.004, 

which implies an equity premium of 0.048 per annum. Furthermore, the unconditional return 

                                                 
1 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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distribution of the CRSP market portfolio is skewed slightly left and leptokurtic in terms of 

the negative SKE of -0.548 and the positive KUR of 1.993. As a consequence, the time series 

of the monthly CRSP market portfolio returns shows pronounced higher distributional 

moments. 

The test statistic N` is computed as in Ljung & Box (1978). This test examines the null 

hypothesis of temporal independence of the respective time series of length � for the first S 

lags of the autocorrelation function where S = aln���c. The latter is motivated by Tsay 

(2005) and guarantees on the one hand that N` is approximately d`e  distributed with S 

degrees of freedom and on the other hand that the test has enough power to correctly reject the 

null hypothesis of temporal independence. Consequently, the Ljung-Box test does not allow 

any statements regarding the short-term persistence of ,L because the examined time series 

of ,L consists of 564 observations and thus S = 7. Therefore, Table 1 also reports ACF1 with 

appropriate p-values, which are based on the standard normally distributed test statistic 

ACF1 j1 √�⁄ m⁄ . 

The first p-value of NO in Table 1 shows that ,L is not affected by autocorrelation, against 

which the values of NO	are very high for �P,L∗ , RSTL∗  and SU,L∗ . The null hypothesis of 

temporal independence is rejected at a 99% significance level for these three distributional 

moments. Although not shown in Table 1, the time series of the standardized versions of the 

empirical third and fourth moments are also autocorrelated at a similar significance level as 

before. However, the respective values of NO decrease to 85.644 and 38.801. Nevertheless, NO 
thus far prohibits statements regarding short-term persistence. The latter is of particular 

interest because of the findings of Benartzi & Thaler (1995) on the substantiality of the 

autocorrelation of ,L. 

In contrast to the Ljung-Box test, ACF1 in Table 1 indicates that ,L is autocorrelated at lag 1 

at a 95% significance level with a value of 0.087 and the respective p-value of 0.039. Against 

which, ACF1 confirms the results of the Ljung-Box test for the other time series. Therefore, 

,L seems to be affected by weak but significant short-term persistence when comparing the 

levels of ACF1 to each other. 

As a conclusion, the monthly time series of ,L, �P,L∗ , RSTL∗  and SU,L∗  are significantly 

autocorrelated, in which ,L shows only weak short-term persistence. The finding for ,L is 

also supported by Benartzi & Thaler (1995). Furthermore, the findings of Bollerslev (1986), 

Harvey & Siddique (1999) and Brooks et al. (2005) agree with the above empirical evidence 

for the autocorrelation of �P,L∗ , RSTL∗  and SU,L∗ . Consequently, application of the ASBA 

should produce different CPT value estimates and inference statistics for the excess return of 

the CRSP market portfolio than the approach of Zeisberger et al. (2007). 

4.2 Comparing Approaches 

The CPT is implemented empirically with (I) the ASBA and with (II) the approach of 

Zeisberger et al. (2007), which produce the respective CPT values �C�o�,LM � and �C�oo�,LM �. In 

Step 5, the ASBA uses 1,000,000 bootstrap replications to approximate the n-month return 

distributions. The approach of Zeisberger et al. (2007) is applied with 1,000,000 bootstrap 
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replications for the CPT value estimates computed using the method of Benartzi & Thaler 

(1995) and with 5,000×1,000,000 bootstrap replications for the associated inference statistics. 

The threshold value in the weighting and value functions is a chained n-month return 

computed on the basis of the one-month Treasury bill rate. Therefore, the threshold values 

differ between the two approaches because for the ASBA, daily returns of the risk-free asset 

for each n-month window are chained, while in the approach of Zeisberger et al. (2007), 

monthly returns are chained according to the length of the investment horizon and 

subsequently averaged. Consequently, the threshold value varies across the n-month windows 

for the ASBA but stays constant over time when using the approach of Zeisberger et al. 

(2007). Nevertheless, the variation is not substantial and the methodical differences between 

the two types of threshold values do not affect the succeeding results. 

 

Figure 1: Comparison of CPT values 

This figure illustrates �C�o�,LM � as a solid line and �C�oo�,LM � as a dashed line for investment horizons A = 1,… ,60 
months. The underlying return series of ,LM  starts in January 1964 and ends in December 2010. The vertical and 

horizontal dotted lines highlight various CPT values of interest. 

Figure 1 compares �C�o�,LM � as a solid line derived according to the ASBA, and �C�oo�,LM � as a 
dashed line derived according to the approach of Zeisberger et al. (2007) for investment 

horizons A from 1 to 60 months. The underlying excess return series of the CRSP market 

portfolio ,LM  starts in January 1964 and ends in December 2010. The estimated CPT values 

from the ASBA are computed in (9) with equal weights in which D� = 1 for all � =
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1, … ,564 − �A − 1�. The vertical and horizontal dotted lines highlight various CPT values of 

interest. 

Both CPT value curves in Figure 1 have the same global minimum for an evaluation 

frequency of 4 months and the same global maximum at an investment horizon of 60 months, 

which also holds for the absolute global maximum. However, �C�o�,LM � has its absolute global 

minimum at an investment horizon of 19 months against which s�C�oo�,LM �s is lowest at an 

investment horizon of 20 months. In addition, the curve of �C�o�,LM � in Figure 1 lies above the 

curve of �C�oo�,LM � across all investment horizons and the two curves begin to drift apart 

starting with an investment horizon of 30 months. The former implies that the differences 

between �C�o�,LM � and �C�oo�,LM � might not be driven by randomness because randomness 

would, for example, cause �C�o�,LM � − �C�oo�,LM � to switch signs across the investment horizons. 

Furthermore, the increasing differences of higher evaluation frequencies suggest that some 

time series characteristics become more pronounced under longer investment horizons. The 

next subsection provides evidence that the autocorrelation in the daily returns series is 

responsible for these increasing differences. 

In contrast, Benartzi & Thaler (1995) and Zeisberger et al. (2007) found the absolute global 

minimum for an evaluation frequency of 11 months. Two things might explain this difference: 

The different estimation periods, particularly in terms of the finding of Zeisberger et al. 

(2007) that CPT values are sensitive towards the chosen time horizon of the underlying return 

series, and the fact that Benartzi & Thaler (1995) and Zeisberger et al. (2007) compute the 

differences in the CPT values of the market portfolio and the risk-free asset (against which 

this study evaluates the excess market return as motivated by the equilibrium model 

propounded by Barberis & Huang (2008)). 

However, point-wise paired inference statistics would be necessary to check the null 

hypothesis �C�o�,LM � = �C�oo�,LM �. These types of inference statistics cannot be obtained because 

on the one hand �C�o�,LM � and �C�oo�,LM � are likely to be correlated because they rely on the 

same underlying return series, while on the other hand the two CPT value distributions differ 

in their dimensions (time-ordered versus unordered). Therefore, the differences between the 

two approaches are assessed via the evaluation of confidence intervals (CI) regarding the 

extent of the effect of myopic loss aversion. 

Table 2: Confidence intervals for CPT value estimates 

This table reports 90%, 95% and 99% CI, which do not contain 0, for the point estimates of the CPT values 

�C�o�,LM � and �C�oo�,LM �. All numbers are in percent. 

 

n 1 2 3 4 5 6 7 

XHtu �VWv � -2.9 -3.5 -3.9 -4.0    

90% [-3.6, -2.2] [-5.0, -2.1] [-6.4, -1.3] [-7.7, -0.4]    

95% [-3.8, -2.0] [-5.3, -1.8] [-6.8, -0.9]     

99% [-4.1, -1.8] [-5.8, -1.2]      

XHtuu�VWv � -3.5 -4.1 -4.3 -4.5 -4.4 -4.3 -4.2 

90% [-4.4, -2.7] [-5.6, -2.7] [-6.2, -2.4] [-6.9, -2.1] [-7.4, -1.5] [-7.6, -0.7] [-8.0, -0.3] 

95% [-4.6, -2.5] [-5.8, -2.5] [-6.6, -2.0] [-7.4, -1.6] [-7.8, -1.0] [-8.2, -0.0]  

99% [-4.9, -2.1] [-6.3, -2.0] [-7.4, -1.3] [-8.2, -0.6]    
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Table 2 reports 90%, 95% and 99% CI for �C�o�,LM � and �C�oo�,LM �. The CI for �C�o�,LM � are 
computed with robust standard errors, as suggested by Andrews (1991), while the CI for 

�C�oo�,LM � are computed using the method of Trede (2002), as suggested by Zeisberger et al. 

(2007). 

The results from Table 2 show that �C�o�,LM � = 0 cannot be rejected for evaluation frequencies 

of at least 5, 4 and 3 months at the respective significance levels of 90%, 95% and 99%, 

against which �C�oo�,LM � = 0 holds for investment horizons of at least 8, 7 and 5 months. 

Therefore, both the ASBA and the approach of Zeisberger et al. (2007) produce myopic loss 

aversion. Furthermore, applying the ASBA implies another investor’s perception of 

attractiveness because the CRSP market portfolio gains significantly in attractiveness against 

the one-month Treasury bill. 

Benartzi & Thaler (1995) argue that an annual investment horizon is a natural interval over 

which fund managers and individual investors make and evaluate decisions. The length of this 

interval is predicated according to the publication frequency of major statement reports from 

companies and pension funds, among others. However, it is questionable to assume a single 

natural interval for all market participants because the amount of available information 

increases with the investment horizon. Therefore, one would expect that the market portfolio 

is either less attractive than the risk-free asset or equally attractive depending on whether the 

proportion of market participants who decide and evaluate decisions on base of this available 

information is significant, which in turn makes several natural intervals more likely. 

As a consequence, the risky market portfolio should be less attractive than the risk-free asset 

for shorter investment horizons but equally attractive for more than a single investment 

horizon, such as the annual horizon discussed by Benartzi & Thaler (1995). Therefore, it 

seems more reasonable to assume that a substantial information exchange between market 

participants begins for example with publishing quarterly financial statement reports because 

the latter belong to the first regular major publications in a fiscal year. Thus, investors with at 

least a quarterly investment horizon should be indifferent between the risky market portfolio 

and the risk-free asset. The CI obtained by the ASBA imply an approximately quarterly 

switch from less attractiveness to equal attractiveness and thus, these CI support the assumed 

beginning of a substantial information exchange. In contrast, the CI from Zeisberger et al. 

(2007) imply that investors do not rely on quarterly information but only consider information 

on a semiannual or less frequent basis. 

Furthermore, recalling that the null hypothesis �C��,LM � = 0 indicates a market in equilibrium 

for the respective investment horizon A according to Barberis & Huang (2008), the effect of 

myopic loss aversion still explains the equity premium puzzle, particularly for one- and two-

month evaluation frequencies because �C��,LM � < 0 holds here at a 99% significance level for 

both approaches. Hence, investors need a significant positive premium to compensate for the 

low attractiveness of the risky market portfolio against the risk-free asset. 
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4.3 Distinguishing Between the Effects 

Although not shown in Table 2, applying, in Step 2, (I*) a modified version of the ASBA with 

the autoregressive order �̂ set to 0 only changes the results at a 90% significance level. 

Therefore, the CRSP market portfolio becomes less attractive than the risk-free asset for 

investment horizons of up to 3 months instead of 4 months as previously reported, although 

the null hypothesis of temporal independence of the daily return series is rejected at a 99% 

significance level with N	
 = 77.730. This study concludes that neglecting the temporal 

dependence in daily returns marginally affects the CI in Table 2, although the identified 

persistence of the daily returns of the CRSP market portfolio is more pronounced than the 

autocorrelation in the respective monthly return series. Consequently, neglecting the weaker 

short-term persistence of the monthly returns is not believed to be responsible for the 

differences shown in Figure 1 and Table 2, against which, allowing for time-varying higher 

distributional moments seems to substantially affect the CI in Table 2. 

 

Figure 2: The effects of autocorrelation on CPT value estimates 

This figure illustrates, in the left panel, �C�o�,LM � − �C�o
∗�,LM � as a solid line for investment horizons A = 1,… ,60 

months. The underlying return series of ,LM  starts in January 1964 and ends in December 2010. The dotted lines 

denote the 90%, 95% and 99% CI for �C�o�,LM � − �C�o
∗�,LM � from inside to outside. The horizontal dashed line 

highlights the zero level. The right panel of this figure shows the median of the estimated autoregressive orders 

�̂y� of daily returns for investment horizons A = 1,… ,60. 

Figure 2 depicts in the left panel �C�o�,LM � − �C�o
∗�,LM � as a solid line and the corresponding CI 

as dotted lines, which are based on robust standard errors according to Andrews (1991), to 

decide whether the null hypothesis �C�o�,LM � − �C�o
∗�,LM � = 0 holds. The CI are for the 90%, 

95% and 99% significance levels, respectively, from inside to outside. The horizontal dashed 

line highlights the zero level. The right panel of Figure 2 illustrates the median autoregressive 

orders of daily returns �̂y� identified by the information criterion of Akaike (1974) for 

investment horizons A = 1,… ,60. 
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The CI in Figure 2 reveal that �C�o�,LM � − �C�o
∗�,LM � = 0 can be rejected for A = 4, 5,48,… ,60 

at the 90% and 95% significance levels and for A = 50,… ,60 at the 99% significance level. 

Apart from the two exceptions for the 90% and 95% CI for 4 and 5 months, considering 

autocorrelation in the daily returns do not seem to affect CPT value estimates significantly 

until an investment horizon of at least 48 months. Nevertheless, the increasing �C�o�,LM � −
�C�o

∗�,LM � for an evaluation frequency of at least 30 months and the CI support the results from 

Figure 1 where �C�o�,LM � and �C�oo�,LM � drift apart for investment horizons of 30 months or 

longer. 

The latter finding becomes more evident in the right panel of Figure 2, which demonstrates 

that after an investment horizon of 30 months the step length becomes shorter and �̂y� grows 

faster. Therefore, there is evidence that the identified persistence in the daily returns affect the 

estimates of the CPT values of longer investment horizons because autocorrelation patterns in 

the return series become more pronounced. This is also consistent with the idea of the AR-

sieve bootstrap because ���� in (8) increases with the time series length �, which in turn 

indicates more complex autocorrelation structures in the underlying return series. 

Furthermore, �̂ for the whole time series of 564 monthly return observations of the CRSP 

market portfolio is only 1 according the information criterion of Akaike (1974). Comparing 

this level of �̂ with the levels of �̂y� in the right panel of Figure 2 further indicates that the 

autocorrelation in the monthly return series is not substantial, although it is significant as 

shown in Table 1. Therefore, further evidence demonstrates that considering time-varying 

higher distributional moments affects the CPT value estimates and their inference statistics 

because �C�o�,LM � − �C�oo�,LM � is positive across all investment horizons, as shown in Figure 1, 

while autocorrelation affects the results only when more pronounced, as shown in Figure 2. 

In addition, the monthly time series of �C��,o�,LM � obtained by the ASBA provides further 

evidence of the influence of time-varying higher distributional moments on CPT value 

estimates because autocorrelation in the daily returns has not yet exerted a significant 

influence on the CPT value estimates, as shown in Figure 2, while �C��,o�,LM � shows significant 

autocorrelation patterns at a 95% significance level. The latter is indicated by the Ljung-Box 

statistic NO = 17.668 with the appropriate p-value of 0.014. This significant temporal 

dependence supports the existence of the relationship between the ascertained time variation 

of higher distributional moments in Table 1 and the time variation of CPT values. This 

temporal dependence, in turn, promotes the differences between �C�o�,LM � and the time-

invariant estimator �C�oo�,LM �. 

5. Conclusion 

The purpose of this study was to ascertain whether considering autocorrelation in the 

underlying return series and time-varying higher distributional moments affects the estimates 

and inference statistics of cumulative prospect theory values. Therefore, this study provided 

an approach to empirically implement the cumulative prospect theory while considering 

autocorrelation and allowing for time-varying higher distributional moments. An empirical 
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analysis compared the proposed approach with the procedure of Zeisberger et al. (2007) by 

reevaluating the effect of myopic loss aversion. 

The results of this study showed that using the autoregressive sieve bootstrap algorithm 

instead of the approach of Zeisberger et al. (2007) produces a gain in attractiveness of the 

market portfolio against the risk-free asset. The results also showed that this additional gain is 

mostly attributed to the neglect of time-varying higher moments of the return distribution of 

the market portfolio. In contrast, considering return autocorrelation affects the level of the 

cumulative prospect theory values only for longer investment horizons because serial 

correlation patterns in the return series become more pronounced. Nevertheless, both 

approaches support the effect of myopic loss aversion and thus cumulative prospect theory 

investors find the market portfolio less attractive than the risk-free asset at a 95% significance 

level for investment horizons of 1 to 3 months for the proposed approach and for evaluation 

frequencies of 1 to 6 months for the procedure of Zeisberger et al. (2007). 

In conclusion, when applying the cumulative prospect theory to evaluate investment 

opportunities, which are based on time series data, time-varying higher distributional 

moments and the autocorrelation of returns, particularly when more pronounced, render it 

valuable to apply the autoregressive sieve bootstrap algorithm presented in this study because 

both time series characteristics affect the estimated perception of attractiveness of cumulative 

prospect theory investors. 
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