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Abstract

This paper presents a practical approach for calibrating jump models using historical data

for the underlying instrument and forward looking information from the derivatives market.

Our investigations reveal that the AR-Jump model outperforms most other models when

applied to historical data. Additionally, a test data-set of options contracts indicates that,

during 2008, jump models are most appropriate in calibrating the volatility forecasts to the

actual prices of options contracts. A distinctive finding is that, in general, the best fitting

model for historical data is not necessarily the model that best calibrates to the forward

looking options data.
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1. Introduction and Literature

This paper demonstrates and calibrates an econometric model of time varying volatility

with jumps, mixing historical observations with forward looking options data. We then use

a dataset of historical equity index data combined with intraday index options prices to

demonstrate the change in jump intensities during 2008.

Since Bollerslev (1986) generalised the Autoregressive Conditional Heteroskedasticity

(ARCH) model, proposed by Engle (1982), a number of different approaches have improved

the explanatory power and the out-of-sample performance of volatility clustering models.

However, the traditional GARCH model has significant limitations for option valuation:

first, it fails to account for a potential leverage effect and second, spot volatility is usually

found to be highly persistent. The former arises because negative news may have an ad-

ditional adverse impact on prices through the decrease of the debt-to-equity ratio thereby

complicating the valuation of deep out-of-the-money options. The latter point reduces the

performance of the model for close to maturity options. These shortcomings have been ad-

dressed through a wide range of extensions, including Nelson (1991) (EGARCH), Glosten

et al. (1993) (GJR-GARCH) and Heston (1993) (NGARCH), where all of these models

generate negative implied skewness of the asset return distribution, which in turn leads to

higher prices of the out-of-the-money put options when compared to the Black and Scholes

formula under time invariant volatility. More recently, several empirical studies have demon-

strated the importance of time-varying volatility and negative skewness in reducing observed

anomalies associated with the Black and Scholes pricing formula when compared to actual

market data, see for instance, Bakshi et al. (1997), Bates (2000), Broadie et al. (2007)) and,

for an example using non-normal innovations, see Christoffersen et al. (2006)).

Modelling higher levels of persistence in time varying volatility models has been the aim

of a number of discrete and continous time models. For example, Jorion (1998) proposes

a model with normally distributed Poisson jumps highlighting the implications for option

pricing. Additionally, strong evidence of jump components in foreign exchange markets has

been found by Jorion (1998) and Palm and Vlaar (1993), while Chan and Maheu (2002)
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and Maheu and McCurdy (2004) investigate a Poisson-normal jump model on individual

stocks and broad indices. The two latterly mentioned papers model time-varying conditional

jump intensity as the simple time-series process driven by the autoregressive component and

the ex-post jump probability. Further observations in the literature reveal that modelling

Poisson-normal jumps in returns and variance along with the conventional GARCH processes

could lead to significant improvement in capturing the underlying process, see for instance

Maheu and McCurdy (2004), and Christoffersen et al. (2008)).

Following the analysis in Christoffersen et al. (2008) this paper presents the component

GARCH specification of the Heston and Nandi (2000) NGARCH model. A closed-form so-

lution exists for the component GARCH models, hence option pricing is relatively straight-

forward. The data covers 1988-2010 which provides an additional challenge for modelling

index volatility due to the highly volatile period during the 2008 financial crisis. We find

that the long-run volatility component is highly persistent, hence we study a special case,

where the long-run component is modelled to be fully persistent. Our models generate richer

autocorrelation structures and volatility of variance paths in comparison to the benchmark

NGARCH model. However, based on the likelihood criterion the persistent specification is

found inferior not only for the component model but also for the benchmark NGARCH for

all the indices studied in this paper.

The NGARCH model with Poisson-normal jumps in returns and variance, which can

potentially alleviate some biases associated with the Heston and Nandi (2000) model, is

used as an additional benchmark for the component GARCH model in Christoffersen et al.

(2008). It appears that modelling conditional non-normalities in the return distribution

improves the fit of the model for the historical returns series. On tbe other hand, the option

valuation comparison provides strong evidence in favour of the component GARCH model.

Poisson-normal jumps improve the NGARCH model’s performance particularly in valuing

the long-maturity and deeply out-of-the-money options, at the same time they worsen pricing

of the short-maturity options.

Evidence that jumps tend to cluster together has been found in the continuous-time and

discrete-time literature. We choose a functional form for the conditional jump intensity
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process similar to the one used in Chan and Maheu (2002) and in Maheu and McCurdy

(2004). The model is applied to data on daily total returns from the following: the Standard

and Poor’s 500 (S&P 500), the Dow Jones Industrial Average (DJIA), the Deutscher Aktien

Index 30 (DAX 30) and the FTSE 100 indices. The maximum likelihood analysis suggests

that the best fit of historical return dynamics is achieved by the AR-Jump model, followed

by the Constant-Jump model with the constant jump intensity and the component GARCH

model being the worst alternative among these three models.

Option valuation performance for a complete cross section of index options for the AR-

Jump model is encouraging. First, the component NGARCH outperforms the component

GARCH model using the root mean squared error (RMSE), which is 1% lower for the AR-

Jump model. Second, the RMSE value corresponding to the shortest maturity options is

23% lower for the AR-Jump model. In addition, a comparison of the implied volatility biases

suggests that the AR-Jump model is able to generate an implied volatility path which better

matches the spot volatility path from market prices.

The remainder of this paper is structured as follows: §(2) provides the derivation and

analysis of the component GARCH model by modelling short-run and long-run volatility

components. §(3) discusses models with Poisson-normal jumps and introduces the AR-

Jump model. §(4) examines the option valuation performance of the component GARCH

and AR-Jump models through calibration to SPX option data, and finally, §(5) concludes.

2. Modelling short-run and long-run volatility components

This section follows the analysis conducted in Christoffersen et al. (2008) and derives the

component GARCH model with the special case of extreme persistence called the persistent

GARCH model. Both models stem from the Heston and Nandi (2000) NGARCH model.
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Construction of the component GARCH model

Heston and Nandi (2000) show that the following NGARCH specification allows for a

closed-form solution for the price of a European call option

Rt+1 = ln (St+1/St) = r + λht+1 + zt+1

√
ht+1 (1)

ht+1 = w + bht + a
(
zt − c

√
ht

)2
(2)

where St+1 denotes the asset price; Rt+1, the logarithmic return; r, the risk-free rate; λ, the

risk premium; ht+1, the daily variance; zt+1, the independently identically distributed (i.i.d.)

normal N (0, 1) shock. This model stems from the conventional GARCH(1,1) specification

and includes a leverage effect, captured by the parameter c. The unconditional variance, is

therefore

E [ht+1] = σ2 = w + bσ2 + a+ ac2σ2 (3)

σ2 =
w + a

1− b− ac2
(4)

substituting w into the original equation one reveals

ht+1 = σ2 + b
(
ht − σ2

)
+ α

((
zt − c

√
ht

)2
−
(
1 + c2σ2

))
(5)

Now, assuming the unconditional mean varies with time and denoting it by qt+1, the equation

may be rewritten as

ht+1 = qt+1 + β (ht − qt) + α

((
zt − γ1

√
ht

)2
−
(
1 + γ1

2qt
))

(6)

This model stems from the Heston and Nandi (2000) NGARCH model and is functional

for a model that allows for the closed-form solution for the price of European call option.

Following Christoffersen et al. (2008), we denote two components of the volatility process,

a long-run component qt+1 and a short-run mean-zero deviations ht+1 − qt+1. The model
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could be rewritten as:

ht+1 = qt+1 +
(
αγ1

2 + β
)

(ht − qt) + α

((
zt − γ1

√
ht

)2
−
(
1 + γ1

2ht
))

(7)

Where
(
zt − γ1

√
ht
)2 − (1 + γ1

2ht) = (zt − 1)− 2γ1zt
√
ht = v1,t, is a mean-zero innovation.

Denoting β̃ = αγ1
2 + β and specifying the functional form of the long run component qt+1 ,

the model appears as

ht+1 = qt+1 + β̃ (ht − qt) + αv1,t (8)

qt+1 = ω + ρqt + ϕv1,t (9)

where

vi,t =
(
zt

2 − 1
)
− 2γi

2zt
√
ht, for i = 1, 2. (10)

This model is now referred to as the component GARCH model or simply as the component

model. Note that if ρ < 1 then the unconditional variance is equal to the unconditional

expectation of the long-run component, that is E [ht+1] = E [qt+1] = ω/(1− ρ). In addition,

both innovation terms are mean-zero E [vi,t] = Et−1 [vi,t] for i = 1, 2. As a result, the

component model has eight parameters λ, β̃, α, γ1, ω, ρ, varphi and γ2, while the benchmark

Heston and Nandi (2000) NGARCH model has five.

The Persistent GARCH model

Conditional variance in the component model is a mean-reverting process if ρ < 1 ,

therefore the fully persistent long-run component is non-degenerate when ρ = 1,

ht+1 = qt+1 + β̃ (ht − qt) + αv1,t (11)

qt+1 = ω + qt + ϕv2,t, (12)

where vi,t for i = 1, 2 are the mean-zero innovations, with functional forms identical to

those of the component model. We refer to this model as the persistent GARCH model or
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simply as the persistent model. This model contains an additional two additional parameters

compared to the benchmark model Heston and Nandi (2000) .

In this model, the long-run volatility component is a unit-root process, hence shocks to

this component never die out. As in the case of the component model we refer to the qt+1 as

the long-run component and to ht+1−qt+1 as the short-run component. It is possible to refer

to these components as the permanent and transitory, respectively, as the former is the unit-

root process and later reverts to zero. It is expected that the component model, which nests

the permanent component model, is superior to the latter in-sample, while out-of-sample

the permanent component alternative may perform better. The fact that the permanent

component model represents a unit-root process may play a crucial role out-of-sample, as it

is able to capture structural break effects and adjust for it, while the component model is

not.

Empirical results from the S&P 500 returns

The parameters of the NGARCH, component and persistent models can be easily es-

timated using the maximum likelihood (ML) method. Table 1 presents the ML estimates

of these models, obtained from the daily total return data on the Standard and Poor’s 500

(S&P 500) index over the period 1988-2010. Most of the estimates are significantly different

from zero at 5% significance level. The risk premium is highly significant in all models.

Based on the log-likelihood criterion, the component model performs the best followed by

the NGARCH model, which is followed, in turn, by the persistent model. Surprisingly,

the persistent model performs worse than the NGARCH benchmark. This highlights the

importance of modelling the long-run variance persistence lower than 1.

Properties of the return process

Figure 1 presents an analysis of the improvement of the component model fit over the

benchmark NGARCH model. It displays the sample path of the spot variance in the

NGARCH model (Panel A), as well as in the component model (Panel B), and the vari-

ance components in the component model over the period 2006-2010. Panel D presents the

short-run mean-zero variance component, which adds high-frequency noise to the long-run
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component (Panel C). As a result, the spot variance path of the component model (Panel

B) appears to be noisier than the path generated by NGARCH model (Panel A). This lead

to a higher volatility of the variance in the component model.

Figure 2 further analyses the performance of the component GARCH model in compar-

ison to the persistence GARCH model. The three left panels depict the 2005-2010 sample

path of spot variance (Panel A), the sample path of long-run variance component (Panel

C) and the sample path of short-run variance component (Panel E) for the component

GARCH model. The three right panels present the similar sample paths for the persistent

GARCH model. Clearly, the persistent model’s performance is affected by the presence of

a unit-root in the long-run variance component, particularly during the time of financial

crisis 2008-2009. Due to extreme persistence of the variance process, the persistent model

is unable to adjust for the spike in volatility as fast as the component model. Furthermore,

the effect of this shock decays at a slow pace, causing serious disturbances in the short-run

variance component, which is found to be negative over the most part of 2009. Note that

the long-run variance component in the component model returns to its 2007 level by the

end of 2009, whereas in the persistence model the variance level observed in the first half

of 2008 is reached by the end of 2010. To conclude, in-sample comparison of the compo-

nent GARCH and the persistent GARCH models highlights the necessity of modelling the

long-run variance persistence different from one.

In addition to the conventional log-likelihood comparison, the three models can be

compared by assessing their variance persistence properties. The variance persistence of

the NGARCH model is defined as b + ac2 of the component GARCH as ρ + β̃ (ht − qt)

(see Christoffersen et al. (2008)). As expected, the variance persistence of the component

GARCH model 0.9954 is almost equal to 1, which is the persistent GARCH case. However,

it appears that modelling persistence as the component GARCH model is important for

the performance. The difference between the likelihoods can be caused by the difference

in the short-run and the long-run persistence of the two models. Short-run persistence of

the component GARCH model is equal to 0.6673 versus 0.8852 for the persistent GARCH,

whereas the persistence of the long-run component is 0.9861 in contrast to 1. The persistence
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of the NGARCH model is 0.9698, which is higher then the average of estimates in Heston

and Nandi (2000), the estimate in Christoffersen et al. (2008) and slightly higher than the

estimate in Christoffersen et al. (2006).

[INSERT A SINGLE PANEL OF FIGURES 1 AND 2 ABOUT HERE]

The volatility of the conditional variance and the covariance and correlation between

returns and variance play a crucial role in option valuation. Option prices depend on the

underlying volatility, thus variation of the option price is a consequence of the volatility of

variance. Christoffersen et al. (2008) show that the volatility of the conditional variance

is closely related to kurtosis and the ability to replicate option prices volatility. Therefore,

the higher values of conditional variance indicate an ability to generate richer kurtosis and

better fit the evolution of option prices.

The functional form of the NGARCH model generates the following function of the

conditional variance of variance

Vart (ht+2) = 2a2 + 4a2c2ht+1 (13)

For the component and persistent models, the conditional variance of variance is equal to

Vart (ht+2) = 2(a+ ω)2 + 4(aγ1 + ωγ2)
2ht+1 (14)

The three left panels in Figure 3 present the paths of the conditional standard deviation

of variance in the three models during the period 2006-2010. It is clear that the standard

deviation of variance in the component model is generally higher and more volatile than in

the NGARCH model. Table 1 reports the average volatility of variance during 2006-2010;

the component GARCH result is almost two times higher than the NGARCH one.

[INSERT FIGURE 3 ABOUT HERE]
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There is a link between the volatility of variance and kurtosis. Figure 3, therefore, shows

that component GARCH model is able to generate richer kurtosis and potentially richer

option prices. Heston and Nandi (2000) show that the conditional covariance between the

variance and return in the NGARCH model is given by

Covt [Rt+1, ht+2] = Et [(Rt+1 − Et [Rt+1]) (ht+2 − Et [ht+2])] = −2acht+1 (15)

Consequently, the conditional correlation in the NGARCH model is defined as follows

Corrt [ht+1, ht+2] =
−2cht+1√
2 + 4c2ht+1

(16)

The conditional covariance in the component GARCH model is given by

Covt [Rt+1, ht+2] = −2 (aγ1 + ϕγ2)ht+1 (17)

thus, conditional correlation in the component GARCH model is

Corrt [ht+1, ht+2] =
−2 (aγ1 + ϕγ2)ht+1√

2(a+ ϕ)2 + 4(aγ1 + ϕγ2)
2ht+1

(18)

The three right panels in the Figure 3 show the conditional correlation between the return

and the conditional variance in the three models. In general, conditional correlation in the

component and persistent models is lower than in the NGARCH model. In the component

and persistent models conditional correlation drops almost to -1 in the first quarter of 2007

and stays extremely low till the end of 2009 in the component model and till the end of

the sample (end of 2010) in the persistent model. Table 1 reports the average correlations

during 2006-2010, -92.74% in the NGARCH model, -97.41% in the component GARCH and

-96.71% in the persistent GARCH.

[INSERT TABLE 1 ABOUT HERE]
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3. Poisson-normal jumps and an Autoregressive (AR) jumps model

Our motivation for contributing a deeper understanding of the jump process is funda-

mentally rooted in the findings from previous empirical studies which appear to confirm the

importance of including jump effects in both returns and volatility. For example, Jorion

(1998) and Palm and Vlaar (1993) show that modelling constant intensity jumps in the

return dynamics can improve the fit of the model while Andersen et al. (2002) demonstrates

the apparent reduction in biases for models such as the Heston (1993) model, when account-

ing for jumps. Others, such as Chan and Maheu (2002), Jorion (1998), Maheu and McCurdy

(2004) and Palm and Vlaar (1993) show the relevance of jump effects in return dynamics for

discrete-time models, while evidence confirming the importance of Poisson-normal jumps in

returns and volatility for continuous time modelling can be found in Andersen et al. (2002),

Bakshi et al. (1997), Bates (1996, 2006), Chernov et al. (2003), Eraker et al. (2003), Er-

aker (2004) and Pan (2002). Perfectly correlated jumps are examined in greater depth by

Broadie et al. (2007), Eraker (2004), and Eraker et al. (2003) while Christoffersen et al.

(2008) and Elkamhi and Ornthanalai (2010) demonstrate improvement in estimating option

valuation when using a discrete-time Poisson-normal jump model. This section outlines

Poisson-normal jumps and provides the building blocks for the AR jump model which we

will compare with the Poisson-normal jump model in §4 for pricing options.

Christoffersen et al. (2008) augment the Heston and Nandi (2000) NGARCH model with

perfectly correlated Poisson-normal jumps in returns and variance to provide a more chal-

lenging benchmark for the component model. Their GARCH(1,1)-Jump model significantly

improves the fit of the S&P 500 daily return series. However, while the component model

is superior, when compared on the basis of option pricing the GARCH(1,1)-Jump model

performs well in valuing deep out-of-the-money and long-maturity options, although it fails

to surpass NGARCH benchmark in pricing short-maturity options. The better performance

of the GARCH(1,1)-Jump model for long-maturity options could be linked to the functional

form of variance, which yields non-normal behaviour of the conditional distribution at longer

horizon.

11



Poisson-normal jumps in returns and volatility

The Constant-Jump model can be described in the following way: Consider the following

return Rt generating process

Rt+1 = r + λzht+1 + λyη + zt+1

√
ht+1 + yt+1 − µη (19)

ht+1 = w + bht + a

(
zt +

yt√
ht
− c
√
ht

)2

(20)

where λz is the diffusive risk premium, λy is the jump risk premium, zt+1 is the diffusive

innovation and yt+1 is the jump innovation. The functional form of the model insures that

the expected log excess returns are equal to the sum of diffusive and jump risk premiums.

Diffusive innovation zt+1 is assumed to be independently and identically distributed N (0, 1),

while the jump innovation yt+1 is a simple compound Poisson process of the following form

yt+1 =

Nt+1∑
j=1

X
{j}
t+1, (21)

with

X
{j}
t+1 ∼ N

(
µ, τ 2

)
, for j = 1, 2, ..., Nt+1 (22)

where Nt+1 is a Poisson random variable with the constant intensity η and conditional

density

P (Nt+1 = j) =
e−ηηj

j!
(23)

There is growing evidence that jumps tend to cluster together in a similar manner to the

conditional volatility processes. Logically, we can think of sustained episodes of abnormal

volatility and market crashes which can be realized in a series of jumps over a short period of

time. For example, using option pricing data, Bates (1991) finds that the number of expected

jumps around the 1987 crash behaved in a systematic fashion i.e. a piecewise constant

intensity around the crash. This finding is reinforced by the continuous-time literature

where evidence of clustering of jump intensities in equity returns is apparent, see for instance

Andersen et al. (2002), Bates (2000), Chernov et al. (2003), and Pan (2002).
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To shed further light on the appropriate jumps process process we offer additional insight

to the GARCH(1,1)-Jump model of Christoffersen et al. (2008) by modelling jump arrival

intensity in a time-varying framework. We take as our starting point the model presented

in Chan and Maheu (2002) and Maheu and McCurdy (2004) where the conditional jump

intensity is modelled as an ARMA process, which is determined by a one-lag autoregressive

component and the ex-post assessment of the jump probability. This model has a similar

functional form to the Constant-Jump model with the added dimenstion that the jump

intensity is modelled as a time-varying process. We refer to this model as the AR-Jump

model.

Intuitively, the clustering of jumps is interpreted as a function of the clustering of news

innovations. Diffusion and jump components, in turn, are the normal and the highly un-

usual, high impact, news events, respectively. Conventionally, the former is modelled as

the normal innovation process and the latter is modelled as the compound jump Poisson

process. It is, therefore, assumed that the normal news cause smoothly evolving fluctuations

of the conditional variance, while the jump process causes exceptionally large movements

of returns and variance. For the individual stocks, unusual news represents unexpected

announcements about prospective cash flows and for the stock indices, they represent unex-

pected information, which affect a wide range of companies.

Building the AR-Jump model

Denoting information available at time t by Φt, the AR-Jump model for returns is defined

as follows

Rt+1 = r + λzht+1 + λyηt+1 + zt+1

√
ht+1 + yt+1 − µηt+1 (24)

with volatility dynamics

ht+1 = w + bht + a

(
zt +

yt√
ht
− c
√
ht

)2

(25)
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and jump intensity

ηt+1 = η0 + ρηt + γξt (26)

yt+1 =

Nt+1∑
j=1

X
{j}
t+1 (27)

with

X
{j}
t+1 ∼ N

(
µ, τ 2

)
(28)

for j = 1, 2, ..., Nt+1, and

P (Nt+1 = j |Φt ) =
eηt+1ηjt+1

j!
(29)

where ξt is the intensity residual and ηt is the ex ante assessment of the number of jumps

to occur in period t. Jorion (1998), Christoffersen et al. (2008) and Constant-Jump models

represent the special case of the above specification with ρ and γ restricted to zero. The

intensity residual has the following form

ξt = E [Nt |Φt ]− ηt =
∞∑
j=0

jP (Nt = j |Φt )− ηt (30)

The probability P (Nt = j |Φt ) is the ex post inference on the number of jumps occurred in

the period t, given information available at time t. E [Nt |Φt ] is the ex post assessment of the

number of jumps that occurred at time t and ηt is the ex ante expectation. In other words,

intensity residual ξt represents the change of the conditional expectation as the information

set updates

ξt = E [Nt |Φt ]− E [Nt |Φt−1 ] . (31)

Note, first, that by construction conditional and unconditional expectations of the intensity

residual are both equal zero

E [ξt |Φt−1 ] = E [ξt] = 0 (32)
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Second, if jump intensity is a stationary process (ρ < 1), then the unconditional jump

intensity is equal to

E [ηt] =
η0

1− ρ
(33)

which is time invariant.

Conditional moments of returns

Both models generate similar conditional moments of returns. The derivation of the

first four conditional moments of returns can be found in Devroye (1982). Denoting con-

ditional variance, skewness and kurtosis of the returns as Var (Rt |Φt−1 ), Sk (Rt |Φt−1 ) and

Kur (Rt |Φt−1 ), respectively:

E (Rt |Φt−1 ) = r + λzht + λyηt (34)

Var (Rt |Φt−1 ) = ht +
(
τ 2 + µ2

)
ηt (35)

Sk (Rt |Φt−1 ) =
ηt (µ3 + 3µτ 2)

(ht + ηtτ 2 + ηtµ2)3/2
(36)

Kur (Rt |Φt−1 ) = 3 +
ηt (µ4 + 6µ2τ 2 + 3τ 4)

(ht + ηtτ 2 + ηtµ2)2
(37)

In the case of the Constant-Jump model, conditional jump intensity is a constant. All

moments are effected by the conditional jump intensity ηt and the conditional variance ht.

The sign of the conditional skewness, in turn, depends only on the sign of the mean of the

jumps’ distribution.

Log likelihood function

The log-likelihood function for the mixture of the normal and Poisson processes represents

the sum of conditional Normal densities of returns, given the number of jumps occurring

P (Rt|Nt = j,Φt−1) =
1√

2π (ht + jτ 2)
exp

(
−(Rt − r − λzht − λyηt − µj + µηt)

2

2 (ht + jτ 2)

)
(38)
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Thus, log-likelihood LL has the following functional form

LL =
r∑
t=1

log

(
∞∑
j=0

P (Rt|Nt = j,Φt−1)P (Nt = j|Φt−1)

)
(39)

The jump intensity function of the AR-Jump is defined as above, with the special case of

constant jump intensity for the Constant-Jump model. The ex post inference on the number

of jumps occurred at time t, based on the information available at this time is defined as

P (Nt = j |Φt ) =
P (Rt|Nt = j,Φt−1)P (Nt = j|Φt−1)
∞∑
j=0

P (Rt|Nt = j,Φt−1)P (Nt = j|Φt−1)
(40)

and represents the ex post distribution for the number of jumps, Nt. Note, that the terms in

the log-likelihood function and ex post distribution include infinite summation. In order to

numerically optimise these functions, the summation has to be truncated after some value.

Similar to Jorion (1998) we truncate the summation in the Constant-Jump model at 10. For

the AR-Jump model the satisfactory accuracy is achieved when the summation is truncated

at 40. Maheu and McCurdy (2004) truncate it at 25, however our model is estimated on a

much more volatile data and needs to capture up to 20 jumps per day.

The S&P 500 model

Table 2 presents the MLE estimates of the Constant-Jump and the AR-Jump models’

parameters for the total returns data on the S&P 500 index over the period 1988-2010. Seven

out of nine parameter estimates for the Constant-Jump model are significantly different

from zero at 5% significance level. Since the jump intensity, the average jump size and the

standard deviation of jumps are found significant, there is a strong jump effect in returns

and volatility. Eight out of eleven parameters are significantly different from zero at a 5%

significance level. All the parameters of the Poisson-normal jumps are found significant

as in the Constant-Jump model. The significance of the conditional jump arrival intensity

parameters confirms that the jump arrival process tends to significantly deviate from its

unconditional mean. The difference between likelihood values (19,675 in the Constant-Jump
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model versus 19,783 in the AR-Jump model) suggests that the AR-Jump model is able to

better fit historical returns.

[INSERT TABLE 2 ABOUT HERE]

Interestingly, the estimate for the jump risk premium is not statistically significant sug-

gesting that this variable is less important than we may have expected. The diffusive risk

premium is found to be significant in both models and the estimate in the AR-Jump model is

similar to the estimate in Christoffersen et al. (2008). The average jump size of the Constant-

Jump model is estimated at -1.2%, similar to the estimates in Christoffersen et al. (2008)

and Chernov et al. (2003), and lower than the estimates in Eraker et al. (2003) and Eraker

(2004). The jump arrival intensity in the Constant-Jump model is equal to 0.025, which is

equivalent to approximately 6.3 jumps per year. Both the mean and the standard deviation

of the jump size distribution in AR-Jump model are significant at the 5% significance level.

The lower average jump size in the AR-Jump model allows for a higher flexibility in the

number of jumps that occur in each period. Negative signs of the estimates in the Constant-

Jump and the AR-Jump models ensure that the conditional skewness of returns is negative

in both models. Overall, the significance of the jump size distributions’ parameters in both

models suggests that the jump dynamics affect return distributions through the conditional

variance, conditional skewness and conditional kurtosis.

The average jump intensity (mean of ηt) is equal to 0.84, while unconditional expectation

of the number of jumps ( η0
1−ρ)is estimated at 0.93, this does not make the later an unbiased

forecast of the former. The significant difference between the unconditional and realized

mean arises due to the fact that the effect of the previous period jump intensity is neutralised

by the intensity residual component, as a result, the conditional jump intensity process bears

only 10% of information.

Figure 4 depicts the conditional variance of returns of the Constant-Jump (Panel A) and

the AR-Jump (Panel B) models, and the conditional jump intensity (Panel C), which denotes

conditional ex ante expectation of the number of jumps to occur in the next period. It is clear
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that the AR-Jump model is able to generate more volatile return and conditional variance

dynamics and absorb shocks during the volatile period of 2008-2009. The functional form

of the time-varying jump intensity process enables it to adjust for the increased volatility in

2008-2009 and the ex ante expectation of the number of jumps increases from nearly zero

in 2006 to 19 by the end of 2008.

[INSERT A SINGLE PANEL OF FIGURES 4 AND 5 ABOUT HERE]

It is also possible to reckon the ex post probability of at least one jump in a period as

P (Nt > j |Φt ) = 1 − P (Nt = 0 |Φt ). Figure 5 displays the ex ante jump intensity expecta-

tion ηt in Panel A, the realized number of jumps E (Rt |Φt ) in Panel B, the ex ante jump

probabilities P (Nt > j |Φt−1 ) in Panel C and the ex post jump probabilities P (Nt > j |Φt )

in Panel D. As expected, realized number of jumps appears to be more volatile than the

conditional jump intensity. The average ex ante probability of jump is equal to 36.9% versus

the average ex post probability of jump 37.0%, which makes the former to be an unbiased

forecast of the later. In the most volatile period of the second half 2008 and the first half of

2009 both probabilities are close to 1, as a result of sharp increase in the conditional jump

intensity and the realized number of jumps.

The conditional variance of returns, which is given above, represents a combination of

the conventional GARCH component ht and the jump variance component (τ 2 + µ2) ηt.

Figure 6 shows the conditional variance decomposition during 2006-2011. Panel A displays

the total conditional variance and Panel B displays individual variance components. It is

clear that the GARCH component generates a smoothly evolving path of the conditional

variance, while the noise and large deviations are generated by the Jump component. Jump

component accounts for 33% of the spot variance during the whole sample and for 47%

during second half of 2008 and first half of 2009. Hence, although Poisson-normal jumps

play significant role in the return distribution, more than 50% of disturbances are explained

by the smooth normal diffusion even in periods of extreme volatility.
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[INSERT FIGURE 6 ABOUT HERE]

Comparison with other indices

In addition to the previous analysis of S&P 500 total return index data we investigate

the performance of the discussed models on different sets of data. We study daily total

return data for three indices: the Dow Jones Industrial Average (DJIA), the FTSE 100 and

the Deutscher Aktien Index (DAX 30) from January 4, 1988 to December 31, 2010. Our

findings indicate that the component model is superior to the NGARCH and persistence

models, while the AR-Jump model outperforms the Constant-Jump model on any set of

data. Therefore, these inferior models are excluded from the analysis.

Maximum likelihood estimates of the parameters for the indices are presented in Table

3. In general, they are consistent with the estimates for the S&P 500 total return index

reported in Table 1. All indices data exhibit high persistence of variance, with the highest

level of 0.9994 persistence of the FTSE 100 return. Persistence of the long-run component

is close to 1 in all series and varies from 0.979 in the DAX 30 return to 0.991 in the FTSE

return, while short-run persistence is between 0.6 and 0.7 in the DAX 30 and DJIA returns

and 0.94 in the FTSE 100 return.

Table 4 reports maximum likelihood estimates of parameters for the three indices. In all

cases the AR-Jump model significantly outperforms the component GARCH model basing

on the likelihood criterion. The diffusive risk premium λz estimate is significant at 5%

significance level, whereas the jump risk premium λy is found insignificant for the three

indices. Compared to the results in Table 2, jump mean sizes are significantly negative and

smaller than the estimate for the S&P 500 total return index. All the results suggest that

modelling time-varying jump arrival intensity may improve the fit of historical data. The

autoregressive parameters ρ are significant for all series and stay in line with the estimate

in Table 2.

[INSERT TABLE 4 ABOUT HERE]
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The parameter γ, which determines the effect of the intensity residual, is relatively low

for the DAX 30 returns and is almost equal 1 for the DJIA and FTSE 100, which is higher

than estimate for the S&P 500 data, though the latter is insignificant. As a result, the

unexpected component has a much higher influence on the conditional jump intensity in

DJIA and FTSE 100 returns than in DAX 30 data. The unconditional mean of the jump

intensity is estimated at 0.42 for the DAX 30 returns, 0.82 for the DJIA returns and 0.94 for

the FTSE 100 returns, while the observed mean are equal to 0.96, 0.74 and 0.92 respectively.

Hence, the unconditional mean is not an unbiased forecast of the jump arrival intensity for

the DAX 30 and DJIA returns, presumably due to relatively short samples.

Figure 7 plots the conditional variance and its constituent components during 2006-

2011. The GARCH component refers to the variance of the normal diffusion and the Jump

component refers to the variance of the compensated Poisson-normal jump process. Al-

though GARCH components account for the 60%-70% on average, it is clear that during

the volatility at the end of 2008 stems from the Jump component. The flexibility of the

AR-Jump model enables it to better capture the structure of the historical data in compar-

ison with the Constant-Jump and the component GARCH models. However, improved fit

of the historical return series does not necessary lead to the better performance in pricing of

options contracts, as this is dependent on a model ‘beauty contest’ conducted by the market

participants.

[INSERT FIGURE 7 ABOUT HERE]

4. Calibration to SPX Option Data

In this section we will now compare the performance of the component GARCH model

and the AR-Jump model for pricing traded call option contracts on the Standard and Poor’s

500 index.
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Option valuation formula

Given the risk-neutral dynamic, at time t, European call option with the exercise price

K that expires at time T is priced at:

Call price = e−r(T−t)Eψt [max (ST −K, 0)] , (41)

where Eψt denotes the conditional expectation under the risk-neutral dynamics. This ex-

pectation might be estimated by the Monte Carlo simulation or, in case of the NGARCH

and component models, by the closed-form solution formulae provided in Heston and Nandi

(2000) and Christoffersen et al. (2008). Denoting a conditional moment generating function

by f (t, T : φ), Christoffersen et al. (2008) show that it can be written as:

f (t, T : φ) = Et [exp (ϕ ln (ST ))] (42)

= Sφt exp (At +B1,t (ht+1 − qt+1) +B2,tqt+1) , (43)

with coefficients

At = At+1 + rφ− (αB1,t+1 + ϕB2,t+1)− 0.5 ln (1− 2αB1,t+1 − 2ϕB2,t+1) + ωB2,t+1, (44)

where

B1,t = β̃B1,t+1 + λφ+ 2
(αγ1B1,t+1 + ϕγ2B2,t+1 − 0.5φ)2

1− 2αB1,t+1 − 2ϕB2,t+1

, (45)

and

B2,t = ρB2,t+1 + λφ+ 2
(αγ1B1,t+1 + ϕγ2B2,t+1 − 0.5φ)2

1− 2αB1,t+1 − 2ϕB2,t+1

. (46)

The terminal conditions are therefore

AT = B1,T = B2,T = 0. (47)
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Therefore, fψ (t, T : iφ) is the conditional characteristic function under the risk-neutral mea-

sure. European call option price, therefore, is the solution of the following equation,

Call price =
1

2
St +

e−r(T−t)

π

∫ ∞
0

Re

[
K−iϕfψ (t, T : iϕ+ 1)

iϕ

]
× (48)

dϕ−Ke−r(T−1)
(

1

2
+

1

π

∫ ∞
0

Re

[
K−iϕfψ (t, T : iϕ)

iϕ

]
dϕ

)

where Re denotes the real part of a complex number. Note that there is no closed form

solution for the option prices for the models with jump components, therefore, options must

be priced by Monte Carlo simulation. We shall now consider the risk-neutral dynamics of

this price process.

Risk-neutral processes are widely used in the financial literature for valuing contingent

claims. The discounted spot asset dynamics under risk-neutral measure represent a mar-

tingale, as the expected return is equal to the risk-free rate. Thus, the parameters of the

NGARCH and component models could be transformed to the risk-neutral parameters by

equalising the expected return to the risk-free rate

Eψt [St+1/St] = er, (49)

Detailed derivations of risk-neutral parameters of the NGARCH and component models

are provided in Heston and Nandi (2000) and Christoffersen et al. (2008) respectively. To

summarise, risk-neutral dynamics for the NGARCH model are given by

Rt+1 = r − 0.5ht+1 + zψ
t+1

√
ht+1 (50)

where

ht+1 = w + bht + α
(
zψ
t
− cψ

√
ht

)2
, (51)

with cψ = c+λ+0.5 and zψ
t+1
∼ N (0, 1) and risk-neutral dynamics for the component model

Rt+1 = r − 0.5ht+1 + zψ
t+1

√
ht+1 (52)
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and

ht+1 = qt+1 + β̃ (ht − qt) + α
(
zψ2
t+1
− 1− 2γψ1 z

ψ
t

√
ht

)
(53)

qt+1 = ω + ρψqt + ϕ
(
zψ2t − 1− 2γψ2 z

ψ
t

√
ht

)
(54)

with contemporaneous terms

β̃ψ = β̃ + α
(
γψ21 − γ21

)
+ ϕ

(
γψ22 − γ22

)
(55)

ρψ = ρ+ α
(
γψ21 − γ21

)
+ ϕ

(
γψ22 − γ22

)
(56)

γψi = γi + λ+ 0.5, i = 1, 2. (57)

All models with Poisson-normal jumps there are three stochastic processes in the dynamics.

Deriving the risk-neutral forms is often somewhat problematic as noted in Christoffersen

et al. (2008). It may be shown that risk-neutral return and variance dynamics for the

simplest Constant-Jump model are defined as

Rt+1 = r − 0.5ht+1 +
(
λψy − µψ

)
ηψ + zψ

t+1

√
ht+1 + yψt+1, (58)

and

ht+1 = w + bht + α

(
zψ
t

+
yψt√
ht
− cψ

√
ht

)2

, (59)

where zψt ∼ N (0, 1) and yψt ∼ CPoisson
(
ηψ, µψ, τ 2

)
, with cψ = c+ λt + 0.5, µψ = µ+ πyτ

2,

(λψy − µψ)ηψ = (λy − µ)η and ηψ = η exp(πyµ + 0.5π2
yτ

2). Elkamhi and Ornthanalai (2010)

show that the market price of jump risk πy can be solved for numerically from the equation

λy = ζ (1) + ζ (−πy)− ζ (1− πy) , (60)

where λy is a ML estimate of the physical process and ζ(φ) = exp(φµ + 0.5φ2τ 2) − 1. As

in case of the NGARCH and component models, risk-neutral dynamics are achieved by

setting the diffusive risk premium λz equal to -0.5 and the jump risk premium λy equal to
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µ − exp(µ + 0.5τ 2) + 1 (see Appendix for the formal derivation). Risk-neutral parameters

of the AR-Jump model are defined in the same way as of the Constant-Jump model except

for conditional jump intensity ηψt , which for the sake of simplicity is assumed to be equal to

the product of conditional jump intensity and expected jump size from the physical process

ηt exp(πyµ+ 0.5π2
yτ

2).

Option prices for the component GARCH model are taken from the closed-form solution

provided above. Monte Carlo simulation is used to find option values suggested by the

AR-Jump model. Due to computational burden of Monte Carlo simulation with compound

Poisson-normal process, it is impossible to generate the ideal number of iterations. The

balance between accuracy and required time is achieved with 100,000 iterations.1 However,

several previous studies have suggested that the higher number of iterations can significantly

improve the accuracy of estimation. We experimented with single contracts up to 1,000,000

iterations and have found convergence usually occurs at between 80,000 and 120,000.

Data

Prices for European call options on the Standard and Poor’s 500 index (the SPX index

option) are collected from the Thomson-Reuters EIKON data service. The data represents

Thursday closing prices during the 2008 crisis period and consists of 2,134 contracts. We

follow the logic presented in Christoffersen et al. (2008), Dumas et al. (1998) and Heston

and Nandi (2000) and use Thursday data because (a) it is less likely to be a holiday and (b)

Thursday is less likely to be affected by day-of-the-week effects.

The SPX index option contract is the second most active index options market in the

United States and is regularly interpreted, for that reason, as the most appropriate market

for examining option valuation performance (see for example, Heston and Nandi (2000).

Rubinstein (1994) indeed argues that it is the best market for examining option valuation

performance. We select option prices that are taken with up to 10 weeks to maturity in

order to test our models performance in valuing short maturity speculative positions.

1It takes up to 1.5 hour to estimate one month of option prices by Monte Carlo simulation with 100,000
iterations
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Descriptive statistics for the options data for the 2008 are presented in Table 5 (Panel

A). Option contracts are divided by moneyness and time to maturity. More than half of the

data represent deep-in-the-money call options and one quarter are deep out-of-the-money

contracts. Therefore, models’ performance for these kinds of contracts can be assessed with

a reasonable degree of reliability. It is noted that at-the-money contracts which comprise

the main source of analysis represents 10% of the sample.

Empirical results from the call option valuation

The results on option valuation by moneyness and maturity are presented in Table 6. The

reported root mean squared errors (RMSE) are obtained from the closed-form solution for the

component GARCH and Monte Carlo simulation for the AR-Jump model as described above.

Risk-neutral parameters are calculated from ML estimates for the two models reported in

Tables 1 and 2 respectively. In the component GARCH model the risk-neutral dynamic is

modelled by using λ = −0.5. In the AR-Jump model this is achieved by taking λ = −0.5

and λy = µ− exp(µ+ 0.5τ 2) + 1 = −3.313E − 5.

Panel B in Table 5 reports the RMSE of the component GARCH model. The results

are potentially affected by the above noted shortcomings in the data with the resulting

RMSE values being too large to make any confident conclusions. All the same, we can

learn some lessons from the patterns that are evident. The component GARCH appears to

perform better in valuing the longest maturity options (more than 45 days to maturity). As

expected, the lowest value of the RMSE corresponds to deeply out-of-the-money contracts.

The RMSE for at-the-money options, which are defined hereafter as contracts with the strike

prices within 2.5% of the underlying index values, are high, which might be caused by the

relatively small sample.

[INSERT TABLES 5 AND 6 ABOUT HERE]

Panel C displays the ratio of the AR-Jump RMSE to the component GARCH results.

The total RMSE values do not differ significantly although the AR-Jump model does appear
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to perform well in valuing short maturity options compared to the component GARCH. We

note that the AR-Jump model performs best in valuing deeply out-of-the-money and at-the-

money options with less than 25 days to maturity. Furthermore, results for the 25 to 45 days

to maturity options are better than the component GARCH model. The RMSE for the AR-

Jump model for the long maturity options are clearly inferior and higher than the component

GARCH results at all moneyness levels. Comparing the results by moneyness, the AR-Jump

model surpasses the component GARCH model in pricing at-the-money contracts.

The performance of the models can also be assessed by comparing the ability of the

model(s) to match the market volatility pattern. To analyse this we impute the Black and

Scholes implied volatility for at-the-money options. The implied volatility is calculated for

each week’s market price, the component GARCH price and the AR-Jump price. Figure 8

depicts the average weekly implied volatility bias for the two models, which is the difference

between average market implied volatility and average model implied volatility for at-the-

money call contracts during 2008. Parameter estimates are obtained from Tables 1 and

2. During 2008 the average value of at-the-money option-implied volatility index (VIX) is

22.3% over the first eight months and 48.0% for the rest of the year. Therefore, we refer to

the period from January to August as a low volatility period and the next four months as a

high volatility period.

[INSERT FIGURE 8 ABOUT HERE]

Both models show significant underpricing (positive bias) in the first fifteen weeks.

Thereafter, the volatility implied by the AR-Jump model stays close to the market-implied

volatility, while the component GARCH model shows overpricing (negative bias) during the

summer months with an extreme drop in the middle, which may be caused by the data

shortcomings discussed above. Overall, both models perform in a somewhat similar way

during the low volatility period. On the other hand, the models generate quite different

paths during the high volatility period models and it is clear that the AR-Jump model bet-

ter matches the spot volatility. As in Christoffersen et al. (2008) the component GARCH
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model shows prolonged underpricing during a high volatility period. Notably, however, the

implied volatility bias from the AR-Jump model is generally lower than the one implied by

component GARCH and even drops below zero in two weeks.

5. Conclusion

This work analyses the component GARCH model proposed by Christoffersen et al.

(2008) and presents an extension to their GARCH(1,1)-Jump model with Poisson-normal

jumps in returns and variance, and time-varying jump arrival intensity. The component

GARCH is found to outperform the Heston and Nandi (2000) NGARCH model and the

fully persistent in modelling daily total returns on four indices during the 1988-2010 period.

Although variance persistence in the component GARCH model is close to 1, it is essential

that it is not modelled as fully persistent. Anecdotal evidence on poor performance of the

persistent GARCH modification is often attributed to the lack of flexibility in the intensity

dynamics, which significantly worsen its results during the period of extreme volatility in

2008-2009. The AR-Jump model is found to achieve the best fit to the daily historical

returns, however this has eleven parameters versus the component GARCH’s eight. Strong

evidence of a jump effect is found in all four series. Moreover, the impressive performance of

the AR-Jump model strongly suggests that jumps tend to cluster together. During the latter

part of 2008 we observe extreme clustering of jumps after the Lehmen Brothers bankruptcy.

The model adapts to this exited state and is able to capture the change in market conditions

in a remarkably adept manner.
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Table 2: This table shows maximum likelihood estimates of the Constant-Jump and AR-Jump models.
Estimates of the parameters are obtained using daily total returns on the Standard and Poor’s 500 index
from January 4, 1988 to December 31, 2010 from the Dow Jones Industrial Average (DJIA), the Deutscher
Aktien Index (DAX 30) and the FTSE 100 indices. Parameters that are significant at the 5% significance
level are reported with a *.

Constant-Jump AR-Jump

Parameter Estimate Standard error Parameter Estimate Standard error

λz 5.929* 0.009218 λz 3.083* 0.005526
λy -0.01547* 0.007288 λy -1.634E-12 5.321
w -9.932E-07 0.002992 w -4.302E-17 18.08
b 0.8933* 0.001643 b 0.979* 0.003658
a 2.583E-06 0.001098 a 3.064E-07 0.002515
c 179* 0.00002709 c 135.3* 0.0001447
η0 0.0247* 0.004493 η0 0.0266* 0.002828
µ -0.01241* 0.004113 ρ 0.9713* 0.002297
τ 0.01879* 0.001799 γ 0.8608* 0.009808

µ -0.004641* 0.00171
τ 0.006705* 0.002265

Ln likelihood 19 675 19 783

Table 3: This table shows ML estimates of the component GARCH model parameters for daily returns
on three indices from 1988-2011. Estimates of the parameters are obtained using daily total returns from
January 4, 1988 to December 31, 2010 on the Dow Jones Industrial Average (DJIA), the Deutscher Aktien
Index (DAX 30) and the FTSE 100 indices. Results that are significant at the 5% significance level are
reported with a *.

DJIA DAX30 FTSE100

Parameter Estimate Standard error Estimate Standard error Estimate Standard error

λ 2.041* 0.01736 0.8354* 0.008361 1.758* 0.01505

β̃ 0.6774* 0.002489 0.6238* 0.004278 0.941* 0.006124
α 2.438E-07 0.01794 3.754E-06 0.009018 2.367E-06 0.005406
γ1 3383* 0.001181 209.5* 0.00003462 124.9* 0.00001346
ω 1.616E-06 0.001543 3.802E-06 0.002335 9.902E-07 0.003756
ρ 0.9844* 0.001581 0.979* 0.002421 0.9907* 0.003765
ϕ 2.932E-06 0.0009801 4.517E-06 0.002363 1.852E-06 0.005322
γ2 101.4* 0.0003313 102.6* 0.0003509 94.78* 0.0007927

Ln likelihood 19667 17952 19582

30



Table 4: This table shows ML estimates of the AR-Jump model parameters for the three indices’ daily
returns, 1988-2011. Estimates of the parameters are obtained using daily total total returns from January
4, 1988 to December 31, 2010 on the Dow Jones Industrial Average (DJIA), the Deutscher Aktien Index
(DAX 30) and the FTSE 100 indices. Results that are significant at the 5% significance level are reported
with a *.

DJIA DAX30 FTSE100

Parameter Estimate Standard error Estimate Standard error Estimate Standard error
λz 3.629* 0.00575 2.454* 0.004563 3.052* 0.00581
λy -1.635E-12 27.26 -1.635E-12 6.521 -1.635E-12 3.448
w -4.302E-17 41.39 -4.302E-17 10.55 -4.302E-17 2.148
b 0.9777* 0.00346 0.9793* 0.002791 0.9894* 0.002248
a 3.398E-07 0.002595 4.075E-07 0.002559 2.788E-07 0.002835
c 143.4* 0.0001273 121.8* 0.0001147 9.943* 0.0001262
η0 0.02964* 0.002312 0.02707* 0.002901 0.02485* 0.002264
ρ 0.9654* 0.002342 0.9698* 0.002332 0.9769* 0.002561
γ 0.9999* 0.4766 0.8409* 0.0105 0.9999* 0.3896
µ -0.003805* 0.001508 -0.004573* 0.001667 -0.003562* 0.001395
τ 0.006958* 0.001029 0.009137* 0.0009207 0.006212* 0.001042

Ln likelihood 19827 18233 19719
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