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During the financial crisis of 2008 not just one but many banks suffered sustained pressure on 

their reserves (primary and secondary) as credit lines were dramatically taken down by non-

financial borrowers.  As banks simultaneously sought to liquidate assets, intermediary losses 

were inevitable.  For poorly capitalized intermediaries even a small loss on converted assets can 

lead to distress and potential insolvency.  In an interconnected financial system, this can cause 

markets to freeze up and lead to severe repercussions for the rest of the economy.  Because banks 

acting in their own best interests tend to pay too little attention to such “systemic risk,” it 

becomes the responsibility of regulators to safeguard the functioning of the U.S. financial 

system.  This paper investigates the relationship between intermediary capital and the stochastic 

usage of credit commitments under two circumstances.  Our research provides insight into 

capital determination by profit maximizing intermediaries when they are, alternatively, 

constrained and unconstrained in their management of bank equity.  Comparisons of the behavior 

of bank capital under these two schemes will hopefully lead to more effective regulation of our 

financial system by authorities. 

 

Asset returns relative to the cost of acquiring permanent funding dictates the level of bank 

capital, while intertemporal bank revenues and funding costs clearly depend upon the nature of 

the stochastic takedown of the loan commitment.  For example, if a credit line is entirely 

depleted within a few days of its inception then usage fees will generate sizable revenues while 

non-usage fees will be insignificant.  The assets used to fund the loan drawdown will give rise to 

very little interest income and asset conversion costs will be fully realized. On the other hand, if 

a dramatic loan takedown occurs near the maturity of the credit line then the bank’s usage fees 

will be small while the non-usage revenue will be relatively large.  Assets, held to fund borrower 
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usage, will generate sizable interim income but suffer liquidation costs at the end of the loan 

contract.  Or if the credit line goes nearly unused through the life of the loan commitment then 

usage fees will be negligible while the bank will enjoy increased income from non-usage fees.  

Interest earned from loan funding sources will be enhanced and asset liquidation costs will be 

small.  While the relative attractiveness of the assets is shaped by the uncertain outcomes 

detailed above, the cost of acquiring permanent funding depends upon the deposit rate paid to 

account holders and the cost of bank capital. 

 

We proxy the uncertain timing and usage of borrower credit lines over time with trended 

Brownian motion.  Relying on “time to first passage” mathematics, we derive a probability 

density function for the time to depletion of the bank credit line as well as the likelihoods for the 

time to exhausting the sources of liquidity that fund the loan takedown.  Armed with these 

analytical results, we solve for the optimal level of bank capital within a simultaneous equation 

framework in order to capture the interrelationship of the endogenous variables along with the 

impact of the exogenous variates.  We believe that while capital determines the scale of bank 

operations there exists a delicate balance between equity, reserves, treasury holdings and bank 

credit lines.  If we ignore these interdependencies we forfeit the opportunity to understand the 

complementary or substitutionary effects of bank decision variables.  Consequently, we solve for 

the level of capital as well as reserves, treasuries and the size of loan commitments that 

maximize the intermediary’s intertemporal profits.  The optimality conditions produce a system 

of integral differential equations which refuse to yield reduced form solutions and provide no 

immediate intuition.  Therefore, the maximizing values of the bank’s decision variables were 

simulated over a host of realistic scenarios.  Our research produces four tables of simulated 
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optimal values for bank capital and of the intermediary’s assets.  Table 1 documents the 

comparative static behavior of the intermediary’s decision variables when equity is 

unencumbered by capital requirements while the second table examines the impact of the same 

parametric changes on bank behavior when equity is a fixed proportion of lending.  The 

remaining tables document the expected time to liquidity depletion under different capital 

requirement schemes.
1
 

 

The dramatic loan takedowns of 2008 demand that the determination of optimal bank capital 

acknowledge that loan takedowns are uncertain. By understanding the recalibrations of profit 

maximizing equity, in this context, authorities will be in a better position to influence and regulate 

banks during a financial crisis. For instance, the size of the Federal Reserve’s balance sheet has 

tripled since its pre-recession level to nearly $2.9T. As part of their “Quantitative Easing” programs, 

the Fed has eagerly bought up treasury securities and pushed debt returns to historic lows throughout 

the term structure.  Our simulations show that QE1 and QE2 have surprising consequences for bank 

capital and an impact upon intermediary lending.  The average weekly bank deposit growth rate for 

the five years prior to the Lehman brothers failure, in September of 2008, was .095%.  For the 14 

days following the Lehman closing the appreciation in deposits was 10 times larger.  Much like this 

surge in permanent funding, our results record the impact of deposit re-intermediation upon bank 

capital and the configuration of intermediary assets.
2
  The “Troubled Asset Relief Program” (TARP) 

was passed by an act of Congress in October of 2008 with a budget that amounted to $700B.  To the 

dismay of many economists, no strings were attached to the $300B that were used for bank capital 

infusions.  In fact, very little of the $0.3T was used to support commercial bank lending.  Our 

simulations detail just what changes in bank assets regulators can reasonably expect from equity 
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enhancements in an environment of uncertain credit line usage.  Since the summer of 2010 the topic 

of the Federal Reserve paying interest on bank reserves (IOR) has been hotly debated.  Many 

economists have argued that if the Fed were to eliminate “IOR” banks would be forced to lend more 

since intermediaries would have one less source of income.  Others maintain that paying interest on 

bank reserves actually encourages lending.  Our endogenous capital approach to this issue provides 

an unambiguous and insightful resolution to the “IOR” controversy. 

 

 

2.  Time to loan depletion 

For our model, we will assume that the cash needs of the borrower ( )C t follow a Brownian 

motion process with a drift of µ where µ >0. 
3
 The borrower’s cash needs represent a dollar for 

dollar takedown of the credit line and the time to loan depletion WT of ( )C t is characterized by 

( )WC T W where W  is the size of the loan commitment.
4
  If ( )C t W then Wt T . That is, we 

let 0( , ; )p c c t be the probability that ( )C t c and that the process does not reach the point of loan 

depletion in the time interval (0,t).  Consequently,   

0 0 0{ ( )  for | (0) } ( , ; ) ( , ; )                     (1a)    

W

WP C t W t T C c p c c t dc P c W t  

is the probability that the time to depletion of W has not occurred by t , we have 

    0( , ; )P c W t = ( ). (1b)Wprob T t  

So that                         0 0 0( , ; ) ( , ; ) 1 ( ; , ) (1c)

W

P c W t p c c t dc G t c W  

where 0( ; , )G t c W is the cumulative probability of the time to the loan’s depletion. 
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Consequently, 

0
0

( , ; )
( ; , )   (2a)

P c W t
G t c W

t  

        or 

0
0

( , ; )
( ; , )   (2b)

P c W t
g t c W

t
 

where 0( ; , )g t c W is the marginal probability density function of WT . 

 

To solve for 0( ; , )g t c W  we simply take advantage of the fact that since 0( , ; )p c c t  is Brownian 

motion it satisfies Kolmogorov’s diffusion equation.
5
  Therefore 0( , ; )P c W t  

satisfies Kolmogorov’s equation and, consequently, 0( ; , )g t c W must satisfy the same 

characterization, so we have  

2
20 0 0

0 0 0

( ; , ) ( ; , ) 1 ( ; , )

2

g t c W g t c W g t c W

t c c c
  

                      (3) 

where  is the instantaneous standard deviation of the borrower’s cash needs.
6
  The expression 

above is a partial differential equation whose direct solution is a bit messy.
7
  It is far more 

convenient to solve for 0( ; , )g t c W by using a Laplace transform with respect to time.
8
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Taking a Laplace transformation of (3) will convert the original partial differential equation 

involving the borrower’s cash needs, coordinate “ c ”, and the time coordinate    “ t ”  into an 

ordinary differential equation in “ c ”. Thus to begin with we have 

2

0 0

( ; , ) ( ; , ) ( ; , )1
.

2

st sto o o

o o o

g t c W g t c W g t c W
e dt e dt

t c c c
       (4) 

 

A Laplace transform of a linear combination of functions is the linear combination of the 

transforms and since both and 
2
 pass through the integral operator we have 

* * 2 *
2

0 0 0

1

2

g g g

t c c c
                                                

                 where *

0

0

( ; , ) .stg e g t c W dt     

 

Furthermore,     
* 2 *

* 2

0 0 0

1

2

g g
sg

c c c
 

because differentiation of the transform 
*g with respect to “ t ” corresponds simply to the 

multiplication of 
*g by s .  

We have a second order linear differential equation with constant coefficients

    

    

2
2

0 0 0

1

2
s

c c c
                               (5a) 
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       where 
*g . 

 

Adopting the trial solution of (5a) as 0

0( )
c

c Ae  yields 0

0'( )
c

c Ae  and 02

0''( )
c

c Ae  

so that (5a) becomes 

   0 0 02 21

2

c c c
sAe Ae Ae  

     or 

   0 2 21
( ) 0

2

c
Ae s  

     or 

   0 2 21
( ) 0.
2

c
Ae s  

Solving 2 21
( ) 0
2

s  for  using the quadratic formula yields  

      1( )s and 

2 2

2 2

2
( )

s
s  .                       (5b) 

 

The general solution to (5a) is  

   1 0 2 0

0 1 2( )
c c

c A e A e                                  (6) 
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Note that if we take the positive square root in (5b), for real values of s  we have 

 

1 2( ) 0 ( ) , ( 0)s s s . 

 

In (6), it is clear that 1A  must be equal to zero because otherwise 1 0

1

c
A e would be unbounded as 

0  approaches c  with 1( ) less than 0s . Furthermore 2 0

2

c
A e should be written as 2 0( )c W

e  so 

that when 0c W , ( )W equals one.
9
  With ( ) 1,W the inverse function 0( ; , )g s c W  will be 

zero.
10

  Consequently, the likelihood of WT >0  is zero when 0c W and establishes the fact that 

loan depletion will take place immediately.
 
 

 

 

Finally, we have  

0 2( ) ( )*

0 0( ) ( ; , )
c W s

c g s c W e
 

 or
   

2 2 1/ 2 2
0( )( ( 2 ) ) /*

0 0( ) ( ; , )
c W s

c g s c W e               (7) 

 

for 0c W .   We conjecture that  

2 2 1/ 2 2
0( ){ ( 2 ) }/

0[g(t;c , ); ]
c W s

W s eL[        (8a)  
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where L represents the Laplace operator and  

2

0 0
0 23

( ) ( )
( ; , ) exp[ ]

22

W c W c t
g t c W

tt
. 
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0[g(t;c , ); ]W sL[  could be written as 

2 2 2
0 0

2

2 2 2 2 2
0 0

2 2

[( ) 2( ) ]

0 2
0

3
0

2( ) [( ) 2 ]

0 2 2
0

3
0

0
0

( ) 1
[g(t;c , ); ]          (8b)

2

or as

( ) 1
[g(t;c , ); ]         (8c)

2

or as

( )
[g(t;c , ); ]

2

W c t W c t

stt

W c W c t s t

t

W c
W s e e dt

t

W c
W s e e dt

t

W c
W s e

L[

L[

L[

2 2 2
10 0

2 2 2

( ) ( ) 2
[ ]

2 2

3
0

1
        (8d)

or as

W c W c s
t t

e dt
t

 

   

0
12

( )

0
0

3
0

( ) 1
[g(t;c , ); ]

2

W c

qt tW c
W s e e dt

t
L[                     (8e) 

 

where 

2 2 2

0

2 2

( ) 2
, ( )

2 2

W c s
q . 
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Using the mathematical fact that 

2 2
00
2 22

2-3/2 /

0

2( )( ) 2
0 2 2

0
0

2

t

allows us to rewrite (8e) as

( )
[g(t;c , ); ] (8f)

( )2

2

qq t t

sW cW c

e e dt e
q

W c
W s e e

W c
                       L[

 

        

2 2 1/2
0 0

2 2

( ) ( )( 2 )
[ ]

0[g(t;c , ); ]

W c W c s

W s e eL[          (8g) 

 

        

2 2 1/2
02

1
( )[ ( 2 ) ]

0[g(t;c , ); ]
W c s

W s eL[ .               (8h) 

                               

So indeed our conjecture is correct and the Laplace transform of 

   0g(t;c , )W =
2

0 0

23

( ) ( )
exp[ ]

22

W c W c t

tt
 is the right hand side of (8a). 

The expression 0g(t;c , )W  is then the probability density function of the time to loan depletion.
11

 

This probability density function integrates to one and the time to loan depletion has a mean of 

0( ) /W c .
12
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3.  Intertemporal revenues and costs 

Optimal capital equates the expected marginal revenue of bank assets to the expected marginal 

costs of the intermediary’s permanent funding.  The left hand side of the bank’s balance sheet 

consists of reserves ( ),R  government securities ( )G  and loans ( ).L   While all three of the assets 

provide revenue to the intermediary, it is also true that R  and G are sources of liquidity for the 

bank as it finances the uncertain takedown of borrower credit lines.  If loan draw down exhausts 

both of these assets our model acknowledges the possibility of interbank borrowing ( ).B  

 

A characterization of expected intertemporal revenues is nearly unmanageable but it provides the 

most important part of the framework in which to consider the bank’s optimization problem.  In 

regard to its intertemporal credit line revenues, the bank must consider two eventualities in four 

alternative time periods.  The simplest scenario is where the loan recipient draws down the entire 

line in the first quarter of his year-long loan commitment. 

 

 

The bank’s earnings associated with a first quarter loan depletion would be 

1 1/4 1/4 1/2

1 0 1 21/4

0 0 0 1/4

0

( )
( ) ( , ; ) ( ) ( )

( )

t
g t

cp c c s dc ds W dt t dt W dt

g t dt

 

 

   +  

3/4 1

3 4

1/2 3/4

( ) ( )W dt W dt     (9) 
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where    

1/4

1 1/4

0

0

( )

( )

g t
t t dt

g t dt

 and  
2 2/2

3
( ) .

2

W t tW
g t e

t
 

 

The innermost integral in the first term of the expression determines the mean cash needs of the 

borrower 0( , ; )cp c c s dc  at a point in time s.  The next integral 
1

0

t

ds accumulates average 

borrower needs from the inception of the loan until the time the line is completely drawn down.  

We characterize the upper limit as being 1t  which is the expected time to exhaustion of the credit 

line presuming that the loan is completely depleted within the first 3 months of being extended.  

The conditional mean time to W, 1t  is mathematically given by  

1/4

1/4

0

0

( )

( )

g t
t dt

g t dt

 according to 

Bayes. 

Of course, 
1

1 0

0

( , ; )

t

cp c c s dc ds  is the amount of the bank’s earnings in the first 

quarter up to the time the credit line is exhausted.  The bank’s earnings on the loan in the first 

quarter after the line is completely taken down is given by 

1/4 1/4

1 1/4

0 0

0

( )
( ) .

( )

g t
W dt t dt

g t dt
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The three remaining terms 

1/2 3/4 1

2 3 4

1/4 1/2 3/4

( ) ( ) ( )W dt W dt W dt   in (9) document the 

bank’s earnings in the final nine months of the contract’s existence.  The expected earnings 

attributable to a loan that is exhausted in its first quarter must be adjusted by the likelihood that 

W is reached by borrower needs within the first three months, 

1/4

0

( ) ,g t dt after his final statistical 

acknowledgement, we have 

1 1/4 1/4 1/4 1/4

1 0 1 1/4

0 0 0 0 0

0

( )
( ) ( , ; ) ( ) ( ) ( )

( )

t
g t

cp c c s dc ds g t dt W dt t dt g t dt

g t dt

 

1/2 1/4 3/4 1/4

2 3

1/4 0 1/2 0

( ) ( ) ( ) ( )W dt g t dt W dt g t dt  

     

1 1/4

4

3/4 0

( ) ( )W dt g t dt     (10) 

 

The contribution to intertemporal expected earnings of credit line loans that are, respectively, 

depleted in the second quarter, the third quarter and the fourth quarter follow the analysis just 

provided and are listed below. 
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Expected Revenues Associated with a 2
nd

 Quarter Depletion of the Loan

  
1/4 1/2

1 0

0 1/4

( ) ( , ; ) ] ( )cp c c s dc ds g t dt  

2 1/2 1/2 1/2 1/2

2 0 2 1/2

1/4 1/4 0 1/4 1/4

1/4

( )
( ) ( , ; ) ( ) ( ) ( )

( )

t
g t

cp c c s dc ds g t dt W dt t dt g t dt

g t dt

                   

                 

3/4 1/2 1 1/2

3 4

1/2 1/4 3/4 1/4

( ) ( ) ( ) ( )W dt g t dt W dt g t dt

 

  

                                    where      

1/2

2 1/2

1/4

1/4

( )

( )

g t
t t dt

g t dt

    .                                                (11) 
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Expected Revenues Associated with a 3
rd

 Quarter Depletion of the Loan

  

    

1/4 3/4 1/2 3/4

1 0 2 0

0 1/2 1/4 1/2

( ) ( , ; ) ( ) ( ) ( , ; ) ( )cp c c s dc ds g t dt cp c c s dc dc g t dt  

                 

3 3/4 3/4 3/4 3/4

3 0 3 3/4

1/2 1/2 0 1/2 1/2

1/2

( )
( ) ( , ; ) ( ) ( ) ( )

( )

t
g t

cp c c s dc ds g t dt W dt t dt g t dt

g t dt

 

 

                   

1 3/4

4

3/4 1/2

( ) ( )W dt g t dt     where   

3/4

3 3/4

1/2

1/2

( )
.

( )

g t
t t dt

g t dt

                    (12)               

  

Expected Revenues Associated with a 4
th

 Quarter Depletion of the Loan 

     

1/4 1 1/2 1

1 0 2 0

0 3/4 1/4 3/4

( ) ( , ; ) ( ) ( ) ( , ; ) ( )cp c c s dc ds g t dt cp c c s dc ds g t dt  

         

43/4 1 1

3 0 4 0

1/2 3/4 3/4 3/4

( ) ( , ; ) ( ) ( ) ( , ; ) ( )

t

cp c c s dc ds g t dt cp c c s dc ds g t dt

 

           

1 1 1

4 1

0 3/4 3/4

3/4

( )
( ) ( )

( )

g t
W dt t dt g t dt

g t dt

where

1

4 1

3/4

3/4

( )
.

( )

g t
t t dt

g t dt

          (13) 
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Expected Revenues if the Loan Takedown is Partial 

Of course, it is always possible that the borrower does not deplete the loan account before the 

loan commitment contract matures. In this case, the revenue in each quarter would be the product 

of the takedown rate ( )i and the mean takedown in each quarter, and for four quarters the 

bank would have 

      

1/4 1/2

1 0 2 0

0 1/4

( ) ( , ; ) ( ) ( , ; )cp c c s dc ds cp c c s dc ds  

0 0

3/4 1

3 4

1/2 3/4

( , ; ) ( , ; )( ) ( ) .cp c c s dc ds cp c c s dc ds  

 

Adjusting the revenues by the likelihood that loan recipient’s cash needs will not reach W means 

that the contribution of this scenario to the bank’s intertemporal expected profits would be 

1/4 1/2

1 0 2 0

0 1/4

03/4 1

3 0 4 0

1/2 3/4

( ) ( , ; ) ( ) ( , ; )

1 ( )

( ) ( , ; ) ( ) ( , ; )

MT

cp c c s dc ds cp c c s dc ds

g t dt

cp c c s dc ds cp c c s dc ds

   (14)                        

                         

where 
0

1 ( )
MT

g t dt is the probability that the loan will not be completely drawn down by MT . 
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Expected Revenues Associated with Loan Non-Usage Fees 

The bank’s expected earnings from non-usage fees should be considered under two circumstances.
13

  

The first situation is when the credit line is depleted before the bank’s commitment to the borrower 

expires which has a likelihood of 
0

( )
MT

g t dt . The second scenario is characterized by the loan not 

being used up before it matures at TM, which is probabilistically given as 
0

1 ( )
MT

g t dt . If the loan is 

not completely taken down then the bank’s expected lending would be given by the borrower’s 

average cash needs from 0 to MT   or  

0

0

( , ; )
MT

cp c c s dc ds . 

The unused amount of the loan would be 
0

0

( , ; ) .
MT

W cp c c s dc ds  The expected revenue 

generated by a non-usage fee of Nr  when the line is not exhausted, adjusted by the likelihood that 

the borrower’s cash needs do not reach W , would be given as  

   
0

0 0

( , ; ) 1 ( )
M MT T

Nr W cp c c s dc ds g t dt

.
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If the loan is completely taken down before MT , then usage up to complete depletion would be 

characterized as  

        0

( , ; )
Wt

ocp c c s dc ds  

where             
0

0

( )

( )

M

W
M

T

T

g t
t t dt

g t dt

. 

 

The amount of the loan that would be considered unused until the time of depletion would be  

0

( , ; )
Wt

oW cp c c s dc ds

 

 

so that the expected earnings from the non-usage fee when the line is taken down before TM  and 

adjusted by the likelihood of a complete takedown would be  

0

0 0

( , ; ) ( ) .
W Mt T

Nr W cp c c s dc ds g t dt
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Combining the expected value of the two scenarios that provide fees from non-usage would 

yield: 

      

0

0 0

( , ; ) 1 ( )
M MT T

Nr W cp c c s dc ds g t dt  

                      
0

0 0

( , ; ) ( ) .
W Mt T

Nr W cp c c s dc ds g t dt                   (15) 

 

Expected revenues associated with loan funding sources 

In conjunction with the determination of the optimal size of a loan commitment, the internal liquidity 

for funding the takedown must be configured to maximize the bank’s intertemporal profits.  The 

assets are denoted as R and G, they each enjoy rates of return (r1, r2) while only G has variable and 

fixed costs of conversion, vcG and FCG.
14

  Once again, R and G are bank reserves and treasuries 

which are individually constrained to be non-negative and when taken with loans, must add up to the 

RHS of the bank’s tee account. 

 

Articulating the revenues associated with holding R to help fund the borrower’s drawdown of his 

credit line involves the consideration of two circumstances.  The first case is when R is entirely 

depleted by the takedown before TM which has likelihood of 

 

0

( )
MT

Rg t dt  

where     
2 2( 0 ) / 2

3

0
( )

2

R t t

R

R
g t e

t

15 
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In this situation, the depletion of the holdings of R over time would correspond to the expected cash 

needs of the borrower from 0 to Rt  given as 

 

0

0

( , ; )
Rt

cp c c s dc ds  

 

where                     
0

0

( )
.

( )

M

M

T

R
R T

R

g t
t t dt

g t dt

 

 

The dollar for dollar depletion of R to fund the usage of the credit line means that the expected 

earnings of reserves when this account is exhausted before TM would be given as 

 

1 0

0 0

( , ; ) ( ) .
R Mt T

Rr R cp c c s dc ds g t dt  

 

If R is not completely depleted by the borrower’s takedown before TM then the expected earnings 

associated with R would be 

1 0

0 0

( , ; ) 1 ( ) .
M MT T

Rr R cp c c s dc ds g t dt  
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Combining the conditional expected values yields expected earnings for R as 

 

1 0

0 0

( , ; ) ( )
R Mt T

Rr R cp c c s dc ds g t dt  

 

  1 0

0 0

( , ; ) 1 ( ) .
M MT T

Rr R cp c c s dc ds g t dt                            (16) 

 

Detailing the revenues associated with using G, a second source of immediate credit line funding, 

involves just one source of uncertainty but two thresholds.  If R is not entirely depleted over the life 

of the loan commitment then government securities would earn 2

0

MT

r G dt and the contribution of this 

eventuality to the expected earnings of G would be  

 

         
2

0 0

1 ( )
M MT T

Rr G dt g t dt                                                    (17) 

since 
0

1 ( )
MT

Rg t dt  is the likelihood of this scenario. 
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If R is exhausted funding the loan but G is not used up by the takedown the contribution to expected 

earnings of government securities would be 

 

           
1

2 1 0

0 0 0

( , ; ) ( ) ( ) .

x M M M

R

t T T T

R R G

t

r G dt r R G cp c c s dc ds g t dt g t dt            (18) 

 

where 

2 2( 0 ) / 2

3

0
( ) .

2

G R t t

R G

R G
g t e

t
 

 

The first term in (18) accounts for the earnings on G until the time R is entirely depleted by the loan 

recipient’s takedown at Rt .  The second term in the expression above accounts for the expected 

earnings attributable to G after it has been converted to reserves but before the cash needs of the 

borrower has depleted the account.  The expression 
0 0

( ) ( )
M MT T

R R Gg t dt g t dt  is the probability that 

the takedown will exceed R but fall short of (R+G). 
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Earnings on G could arise from the situation where the stochastic takedown of the loan exhausts both 

R and G before TM.  This possibility has a likelihood of 
0

( ) .
MT

R Gg t dt   The expected value of this 

scenario to the bank’s intertemporal profits would be 

 

2

0 0

( )
R Mt T

R Gr G dt g t dt  

 

1 0

0

( , ; ) ( )
R G M

R

t T

R G

t

r R G cp c c s dc ds g t dt                                 (19) 

 

where  
0

0

( )
.

( )

M

M

T

R G
R G T

R G

g t
t t dt

g t dt

            

 

Expected costs associated with funding the loan takedown      

Articulating the costs associated with financing a loan takedown using government securities 

involves the consideration of three scenarios.  If R is not entirely depleted before TM then G would 

incur no conversion costs since it would not be used for funding.  A second scenario occurs when R is 

completely depleted providing takedown funding while G is not exhausted.  In this case, the bank 

would have expected conditional costs of 

 

        0 0 2

0 0

( , ; ) ( , ; ) ( ) ( ) .
M MT T

G M R R R Gc cp c c T dc cp c c t dc FC g t dt g t dt          (20) 
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The first term within the brackets, νcG, details the per dollar costs of converting government securities 

into reserves for funding the takedown.  The second term provides the expected amount of 

government securities that will need to be liquidated by determining the borrower’s expected cash 

needs between Rt  and MT .  The term FCG proxies the fixed costs associated with converting G into 

reserves.  The expression 
0 0

( ) ( )
M MT T

R R Gg t dt g t dt  is the probability that the takedown will exceed 

R but fall short of (R+G) before TM. 

 

The final scenario takes place when both R and G are completely exhausted by the credit line being 

taken down.  In this case, conditional expected costs would be characterized by  

 

                0 0

0

( , ; ) ( , ; ) ( ) .
MT

G R G R G R Gc cp c c t dc cp c c t dc FC g t dt

16

                 (21) 

 

The likelihood that borrower takedown will exceed (R+G) before the loan commitment matures is 

given by 
0

( ) .
MT

R Gg t dt
17

  

 

The expected intertemporal funding costs must account for the possibility that the loan takedown 

could exceed the value of the assets immediately available for funding (R+G).  If the credit line is 

completely drawn down before TM then the impact of borrowing by the bank could be described by 

the following conditional expected cost 
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3

0
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( )

M M

R G

T T

M

Mt

g t
r W R G T t dt g t dt

G T
                      (22) 

 

The first term above records the interbank borrowing rate, r3, that the bank must pay for emergency 

money to fund the loan takedown.
19

   The expression 

 

0( , ; ) ( )
W

R G

t

t

cp c c s dc R G ds  

 

accounts for the amount of funds needed to bridge the gap between expected borrower needs and 

(R+G) from R Gt  to .Wt
20

 

 

Alternatively, if the credit line is not depleted before TM but the expected takedown does exceed 

(R+G) then the conditional expected cost would be given by 
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Costs associated with permanent asset funding 

Our model recognizes that the bank’s supply of equity and cost of equity logically depends upon 

the amount of capital raised where the more capital that is raised, the greater the unit cost.    This 

is consistent with Kopecky and VanHoose (2004) who suggest the cost of equity is a positive 

quadratic function of the amount of bank equity raised.   Furthermore, the idea the cost of equity 

rises with the quantity raised is consistent with Asquith and Mullins (1986) who find that 

seasoned equity offerings reduce the share prices of the issuing firm.  They suggest the reduction 

in share price is consistent with a negative sloping demand schedule where the firm supplying 

more shares has to reduce the price of a share to induce an increase in the quantity of equity 

provided. The idea of a negative sloping demand for equity schedule is well accepted.  For 

example, see Gao and Ritter (2010) who review many articles supporting the idea of negatively 

sloped demand schedule. In fact, Gao and Ritter (2010) find that alternative techniques for 

marketing seasoned equity clearly affects the severity of the negative slope of the demand for 

equity schedule. 

 

4.  The Objective Function 

Combining expressions (10), (11), (12), (13), (14), (15), (16), (17), (18), (19), (20), (21), (22) 

and (23) yields the bank’s expected intertemporal profit from a credit line, ( ) :E  

1 1/4 1/4 1/4 1/4

1 0 1 1/4
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Scrutinizing the objective function, it is clear that the bank’s decision variables have many points of 

incidence in E(π).  The assets used to fund the credit line, R and G, are found in the expected profit 

equation 81 and 41 times, respectively.  W, the negotiated size of the credit line, is found on the RHS 

of the profit equation more than 12 dozen times.  The bank’s mark-up  explicitly appears in the 

objective function 32 times.   Since W(≡W(γ, , Гi) is an artifact of , the impact of “W” is 

augmented by another 2 dozen appearance in E(π).   While our final decision variable “k”, bank 

capital, appears only once in E(π) it is found in the constraint that reconciles the LHS and RHS of the 

bank’s balance sheet.  The reader should keep in mind that W* becomes L as it is taken down.  The 

loan size “L” at t0 is considered to be term loans with an initial value L0 that is given exogenously in 

this analysis. 

 

Differentiating E(π), alternatively with respect to W, R, G  and k, then setting each result equal 

to zero yields a system of integral differential equations.  The four first order solutions are 
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lengthy and so confounded that they are barren of any intuition.  Not only are the bank’s decision 

variables found frequently in the optimality conditions but their appearances are highly disparate.  

For instance, 
*W is in lower limits, upper limits and integrands of integrals not just once but 

dozens of times and not just in one of the FOCs but all four of them. These same observations 

are true of 
*R , 

*G  and 
*.k   Not being able to isolate the decision variables on the left hand side 

of the first order conditions mutes any obvious insight.  In addition, the complexity of the 

optimality conditions guarantees that the implicit function theorem will be fruitless in yielding 

any useful comparative static analysis.  Consequently, we simulated the values of the bank’s 

decision variables which satisfy the FOCs over a host of scenarios.  In order to obtain solutions 

for 
*,W *R  , 

*G  and 
*k , we must select illustrative values for a host of parameters and variables.  

As has been clear since Section III, the length of the bank’s planning period is one year.  We 

chose 1r = 2% and 2r  = 4% under the sole presumption that the rate of return on treasuries had to 

be greater than the rate that the Fed was paying on bank reserves shortly before the crisis.  The 3 

month  ( )i iLIBOR  as chosen to be 6% across all four quarters.  Clearly if the bank has 

definitive expectations about future iLIBOR  rates then the intermediary could easily substitute 

those forecasts into 1 2 3, , ,  and 4 .  The cost of external borrowing by the bank 3r  was set 

equal to 9%. 

In regard to its fees on credit lines and the rate paid on the part of the credit line that has been 

taken down, the bank is a price maker and faces a downward sloping demand schedule.  We 

recognized W as the demand for loan commitments by borrowers and write it as a function of the 

non-usage fee ( )Nr  and the rate paid on the takedown ( Γi + ).  An exponential functional form 
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was chosen for W( Nr , i , ), though we  treat both the non-usage fee  Nr  and  i  as being 

exogenous of decision makers they influence the demand for credit.  The partial derivative of 

credit demanded with respect to  is simply 

( , , )
( , , )N i

N i

W r
W r  

 

detailing an inverse relationship between the magnitude of the loan commitment demand and the 

bank’s fixed mark-up rate.  We picked a value for  that would allow the elasticity of demand 

to be in the neighborhood of -1 (depending on the exact solutions for 
*
and 

*W ).  We assumed 

that the bank would have to pay both the spread and a commission, so liquidating $100M of 

treasury securities could easily cost a half a million dollars. Consequently, we assigned “ Gvc ” 

the value of $.005 per dollar of treasuries converted to reserves.
21

   

 

We used Newton’s search technique to numerically solve for 
*W , 

*R , 
*G  and 

*k .   The 

optimality conditions for the bank’s decision variates are given as 
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Using a first order Taylor expansion on the vector above yields  
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Solving for 
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, we get 
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By multiplying both sides of the expression by the inverse of the Jacobian, we get 
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Finally, we isolate the solutions for the bank’s decision variables at iteration 1N   to obtain 
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Of course, the magnitude of N  depends upon the number of iterations it takes for the bank’s 

optimal solutions to converge. A tolerance level of 710 was used in the simulations.
22

   

 

5.  Numeric Solutions to the FOCs 

For the parameters specified in Section 4, the values of the decision variables that maximize the 

bank’s intertemporal expected profit were obtained and appear in the second column of Table 1.  

In the base case, optimal reserves are $3.020B, treasuries $17.541B, loan commitments 

$50.053B and bank capital $6.118B.  These solutions approximate the average size of identical 

accounts held by the 80 largest U.S. banks in the third quarter of 2007 and provide a familiar 

starting point for our analysis.   

In order to gain a better understanding of 
*W , 

*R , 
*G  and 

*k , as well as their interdependence, 

we perform a comparative static analysis upon the optimal solutions.  The original parameter 

settings were alternatively increased by 10% and the simulated results are provided in the 

remaining six columns of the table.  In the second set of simulations, we presume the Fed 

increases 1r  to 2.2%.  The increase in asset profitability increases the scale of bank operations as 

capital rises by $0.396B.  The equity enhancement helps to finance an increase in credit line 

lending 
*W  from $50.053B to $50.327B.  Intuitively, the increase in “IOR” augments the 

revenue associated with maintaining stored liquidity to finance uncertain loan takedowns.  

Consequently, lending is more profitable and, optimally, the bank does more of it.  Bank reserves 

rise from $3.020B to $4.419B while optimal government security holdings fall by $2.001B.  Of 
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course, these results provide support for the Fed’s decision to pay interest on reserves since it 

encourages both bank lending and capital formation. 

 

In the third column comparative static results are detailed for an increase in 2r  to 4.4%.  Again in 

this simulation the increase in asset profitability occasions an enhancement in 
*.k   The 

acquisition of capital provides additional permanent funding for a new higher level of 
*G  at 

$22.075B while the bank reduces its optimal holdings of reserves.  It is of note that 
*W  falls to 

$48.9B as the intermediary substitutes security holdings for loan commitments.  It follows from 

this analysis that the Fed’s pursuance of QE1 and QE2 could very well be just the right line of 

attack during our current economic downturn. Quantitative Easing has essentially meant 

sustained efforts by the Fed to replace treasury securities with bank reserves.  As a consequence 

of this behavior by the Board, the price of treasuries have risen dramatically and 2r  has fallen to 

historic lows.  Of course, a reduction in the return to G  is no more than the mirror reflection of 

this third simulation in Table 1.  As such the fall in 2r  would, optimally, mean a fall in 

intermediary treasury holdings and an increase in credit line lending in an environment 

characterized by stochastic borrower takedowns. 

 

The fourth set of simulation results investigates the impact of an increase in the cost of 

liquidating treasuries to fund the stochastic takedown of credit lines over time.   The increase in 

" "Gvc  reduces the attractiveness of the LHS of the bank’s balance sheet and contracts the scale 

of operations as 
*k  retreats to $5.982B.  

*G  falls from $17.541B to $16.216B since its 
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attractiveness as a source of stored liquidity is diminished.  At the same time, the bank puts more 

reliance on reserves to provide immediate financing to an escalated level of 
*.W  The results 

found in column 6 record the new solutions to the first order conditions associated with a 10% 

increase in bank deposits.  The change in deposits from $47.656B to $52.422B amounts to a 

$4.766B increase in permanent funding for LHS of the intermediary’s tee account.  Bank 

reliance upon equity for permanent funding falls from $6.118B to $5.276B since deposits are 

being used to provide substitute permanent funding for 
*R , 

*G  and 
*W .  Credit line lending 

increases to $52.646B to take advantage of the increased deposit funding.  Clearly, this 

simulation parallels the dramatic re-intermediation of bank transaction accounts that took place 

in September 2008.  The results in Table 1 suggest that were it not for other forces the “flight to 

safety” by domestic depositors would have lead to increased credit line lending 
*.W  The sixth 

set of simulations detail just what happens to 
*R , 

*G , 
*W and 

*k  if there is an increase in the 

elasticity of demand for loan commitments.  The 10% increase in ρ reduces the attractiveness of 

credit line lending and occasions a reduction in 
*k  since 

*W  now needs less permanent 

financing.  Part of the fall in 
*W appears as an increase in the optimal holdings of government 

securities.  The final set of simulations that appear in Table 1 documents the impact of a 10% 

decrease in the elasticity of the supply of bank capital.  The contraction in the supply of equity 

schedule reduces 
*k  by 12.23% from its original base case solution of $6.118B.  The 

deterioration in capital occasions a fall in 
*R , 

*G  and 
*W  due to the decrease in permanent 

financing for the LHS of the intermediary’s balance sheet. 
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In summary, the simulations investigate the relationship between 
*R , 

*G , 
*W  and 

*k  when loan 

timing and usage is recognized as being stochastic and the implications of this uncertainty is 

acknowledged.  Alternative enhancements in returns offered by bank assets, 1r  then 2r , induce 

the bank to acquire more capital in both cases and occasions substitution among the competing 

assets.  A surge in the source of permanent funding increases the optimal holdings of bank assets 

across the board.  Conversely, a contraction in financing provided by the RHS of the 

intermediary’s tee account reduces 
*R , 

*G  and 
*W .  A strength of Table 1 must be just how 

intuitive the comparative static results are given the ambitious context of the simulations. 

 

6.  The Impact of Binding Capital Requirement Upon Optimal Bank Lending 

Maximizing  intertemporal expected profits with uncertain loan usage provides us with a realistic 

framework in which to investigate the relationship between capital requirements and 

intermediary lending.   In particular, endogenizing equity allows us to speak to the conflict that 

has arisen in regard to the issue of adequate bank capital.  While one school of thought maintains 

that equity has to rise in order to protect taxpayers from the next great financial crisis.  Others 

argue that enacting binding capital requirements would discourage bank lending and stall the 

nation’s recovery.  Table 1 details the comparative static behavior of bank decision variables 

under nonbinding capital requirements (NB-CR) while Table 2 documents the same simulations 

when capital is constrained to be a fixed proportion of lending (B-CR).  In Table 2, once again an 

increase in IOR makes assets more profitable and induces an increase in 
*k .

 The increase in 

permanent funds supports an increase in
*R and 

*W . Optimal treasury holdings increase with the 
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+.4% change in 2r  while both 
*R and 

*W fall since they become relatively less attractive to the 

bank.  In the second table, an increase in the per dollar conversion cost of government securities 

reduces 
*G  from its base case solution and increases both 

*R and 
*W .  A 10% increase in 

deposits supplied to the bank supports an increase in 
*R , 

*G  and 
*W since transactional 

accounts are a cheap source of permanent funding. An increase in the elasticity of demand for 

credit, in Table 2, reduces 
*k  and discourages both 

*R and 
*W  while 

*G  increases relative to its 

base case FOC solution.  In the final simulation provided by the second table, a decrease in the 

elasticity of supply of bank capital reduces 
*k  and 

*W .   

 

Clearly Table 2, in and of itself, is interesting but not very surprising since the comparative static 

results are intuitive and, generally, in the spirit of the results provided in the first table.  However 

when Table 2 is compared and contrasted with Table 1, the impact of binding capital 

requirements becomes apparent.  For example, consider an increase in r2 to 4.4% then assets 

would become more productive seemingly encouraging bank capital under either regime.  In 

Table 1, capital does indeed surge which funds an increase in G* while W* falls.  Under binding 

capital requirements the enhanced attractiveness of treasuries discourages credit line lending.  

The fall in W* reduces k*.  Given the current performance of the domestic economy let’s re-

interpret this result for a decrease in r2.  In particular, say the Fed buys treasuries to reduce the 

return to G* and support an economic recovery then, according to Table 2, both k* and W* will 

increase.  Clearly this is a strong result that suggests expansionary monetary policy will reduce 

interest rates and encourage capital formation if equity requirements are binding. In contrast, 

under NB-CR, if the Fed reduces r2 endogenous bank capital will fall. 
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In times of financial stress, it is often the case that many banks are simultaneously trying to 

liquidate assets and, consequently, conversion costs increase. An increase in " "Gvc  induces the 

bank to reallocate its assets in favor of 
*W  at the expense of 

*G under both capital requirement 

regimes (binding and non-binding).  The LHS of the bank’s balance sheet is not as profitable as 

it was before the hike in " "Gvc , consequently, the intermediary contracts the permanent funding 

it acquires and 
*k  falls under NB-CR. In Table 2, the increase in asset conversion costs 

encourages 
*W which dictates an increase in bank equity. This result provides more support for 

binding capital requirements since the financial events that occasion increases in  " "Gvc  should 

be greeted with increasing levels of bank equity. 

 

An autonomous increase in deposits from $47.656B to $52.422B provides permanent funding for 

increases in 
*R , 

*G  and 
*W  in both Table 1 and Table 2.  In the case of binding equity 

requirements, the increase in credit line lending demands an increase in 
*k as well.  However, 

under NB-CR, the solution to the FOC for optimal capital actually falls since deposits have 

become a more attractive source of funding for the bank’s assets.  This result is disconcerting in 

the sense that exogenous increases in the supply of bank deposits are normally associated with  

“flights to quality.”  Funds often flow into transactional accounts during moments of economic 

and financial stress.  These are times when regulatory authorities would prefer that banks have 

greater levels of capital on hand. However, our results suggest that an influx of funds into 
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depository accounts could optimally be used to reduce the bank’s reliance on equity when capital 

requirements are not binding. 

 

Under the two capital requirement schemes, the six alternative parameter changes move 
*k  in the 

same direction in the three cases but in opposite directions in the three remaining circumstances.  

Increases in asset conversion costs for a bank and in the level of intermediary transactional 

deposits are economic occurrences associated with stress in the financial sector.  The fact that 

optimizing behavior, in the face of these events, dictates a reduction in unconstrained equity is 

reason alone to ensure that capital requirements are binding.   Furthermore, the optimal level of 

credit line lending is greater under B-CR with either the increase in conversion costs or the 

increase in bank deposits. When parametric changes move capital in the same direction in Tables 

1 and 2, the adjustments of 
*W and 

*k are smaller in magnitude under the B-CR regime.  

Realistically changes in 2r  or  or will impact all commercial banks simultaneously.  The 

unconstrained recalibration of credit line lending and equity under NB-CR will generate more 

market volatility than will the change in these accounts under binding requirements.  While the 

restrained adjustments of 
*W and 

*k will be less disruptive to financial markets, they also provide 

further support for the idea of effectively regulating the amount of equity a bank must hold. 

 

7.  The Expected Time to Liquidity Depletion 

In the simulations provided by Tables 1 and 2 expected intertemporal profits were maximized by 

the bank under binding and nonbinding capital requirements.  The determination of 
*R  and 

*G  

was strictly on the basis of their respective contributions to ( ).E However, in regard to 
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safeguarding the financial system, the Federal Reserve is interested in the ability of individual 

banks to meet their liquidity needs when markets are “stressed”.  The financial crisis of 2008 

occasioned just such a scenario.  Not just one bank but many intermediaries simultaneously 

suffered sustained pressure on their reserves (primary and secondary) as deposits were 

liquidated, credit lines were taken down and interbank borrowing markets were frozen.  In times 

like these, regulators would like banks to be able to satisfy a minimum liquidity coverage ratio

LCR  of 1 where:  

 . 

This metric ensures that the intermediary maintains an adequate level of “unencumbered, high 

quality assets” that can be used to meet its cash needs for at least 30 days.  The Fed assumes that 

within a month’s time that the bank, at hand, can take action to resolve the impact of market 

stress in an orderly way.  The optimal level of bank liquidity, detailed in the simulations, has a 

likelihood of depletion given by RLS (risk of a liquidity shortage) 

2( ) / 2

2 30
[  ]

2

M
i

T
q t tiq

RLS e dt
t

 

and, consequently, an expected time to depletion of qi

 

which is given by 

2( ) / 2

2 30
[ ]  [  ]

2

M
i

i

T
q t ti

q

q
E T t e dt

t
  

or 
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[ ]  ( )
M
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T

qE T t g t dt  

for qi, alternatively, equal to 
*R  and 

* *( ).R G    
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The results recorded in Tables 3 and 4 should afford regulators a great deal of comfort.  If high 

quality liquid assets are strictly interpreted as bank reserves then regardless of the impact of 
*k  

upon 
*R  the bank is always left with at least 21 days of protection.  Whether capital 

requirements are binding or nonbinding the shortest expected time to depletion of bank reserves 

is calculated to be 20.98 days.  Alternatively, in Table 4, if “unencumbered, high quality assets” 

is taken to mean the bank’s reserves plus its treasury holdings then the intermediary should 

expect to have at least 143.47 days before depository liquidity is exhausted.  This time to expiry 

is shortest horizon recorded under either the NB-CR regime or the B-CR scheme.  The reader 

should keep in mind that the determination of 
*R
 
and of 

*G  are both under the assumption that 

the bank maximizes its intertemporal profits not that it satisfies the Federal Reserve’s liquidity 

coverage ratio.  Despite this, the average LCR for 
* *( )R G  is just about 5 times as large as the 

expectations of regulators.   
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8.  Summary 

The intent of this research was to characterize optimal bank capital when stochastic credit line 

usage was acknowledged.  We proxied uncertain loan takedown with trended Brownian motion.  

Relying on “time to first passage” mathematics, we derived a probability density function for the 

time to depletion of the bank credit line as well as the likelihoods for the time to exhausting the 

sources of liquidity that fund the loan takedown.  Armed with these analytical results, we solved 

for the level of bank capital as well as reserves, treasuries, and the size of credit lines that 

maximize the intermediary’s expected intertemporal profits.  The optimality conditions produced 

a system of integral differential equations which refused to yield reduced form solutions and 

provided very little intuition.  Consequently, the bank decision variables which satisfied the 

FOCs were simulated over a host of realistic scenarios.  Under NB-CR, alternative enhancements 

in the returns offered by reserves and treasuries induced the bank to acquire more capital in both 

cases.  While the increase in r1 and then r2 occasioned predictable substitutions among the 

competing assets.  A surge in the source of permanent funding increased the optimal holdings of 

bank assets across the board.  Conversely, a contraction in the supply of capital schedule reduced 

* *,R G  and 
*.W  

 

The results recorded for optimal bank behavior in Table 2, under binding capital requirements, 

were very much in the spirit of those provided in the first table.  However, there were some 

salient differences that support the idea of regulating intermediary equity.  An increase in either 

asset conversion costs or in the level of transactional deposit balances are occurrences associated 

with stress in the financial sector.  Our simulations recorded a reduction in optimal capital under 

NB-CR in the face of each of these events.  While when equity is constrained, 
*k  increases.  
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These two results alone are convincing support for binding capital requirements. Furthermore, 

the third set of simulations in Table 2 establish that if the Fed were to pursue expansionary 

monetary policy and reduce r2 then both 
*W and 

*k would increase. While, under NB-CR, Fed 

purchases of treasuries reduce r2 and encourage credit line commitments but optimal 

intermediary capital falls. The increase in bank equity during periods of expansionary open 

market operations, in the second table, provides additional support for the idea of binding capital 

requirements.  
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Table 1:  Comparative Static Behavior of Bank Decision Variables 

With Stochastic Takedown of the Credit Line with NB-CR 

(B=billions) 

 

 

 

 
 

 

Parameter 

 

 

Base Case 

Value 

 

Given a 

10% 

Increase in 

r1 

 

Given a 

10% 

Increase in 

r2 

 

Given a 

10% 

Increase in 

vcG 

 

Given a 

10% 

Increase in  

D 

 

Given a 

10% 

Increase in 

ρ 

 

 

Given a 

10% 

Decrease 

in γ 

r1 2% 2.2% 2 %  2% 2% 2% 2% 

r2 4% 4  % 4.4% 4% 4% 4% 4% 

vcG $.005/$ $.005/$ $.005/$ $.0055/$ $.005/$ $.005/$ $.005/$ 

D $47.656B $47.656B $47.656B $47.656B $52.422B $47.656B $47.656B 

ρ 40 40 40 40 40 44 40 

γ 12.5 12.5 12.5 12.5 12.5 12.5 13.75 

W
* 

$50.053B $50.327B $48.900B $50.198B $52.646B $48.009B $49.547B 
*R  $  3.020B $  4.419B $  2.877B $  3.714B $ 3.914B $  2.933B $  2.991B 
*G  $17.541B $15.536B $22.075B $16.216B $18.648B $17.893B $17.329B 
*k  $  6.118B $  6.514B $  6.971B $  5.982B $  5.276B $  5.274B $  5.370B 
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Table 2:  Comparative Static Behavior of Bank Decision Variables 

With Stochastic Takedown of the Credit Line with B-CR 

(B=billions) 

 

 

 

 
 

 

Parameter 

 

 

Base Case 

Value 

 

Given a 

10% 

Increase in 

r1 

 

Given a 

10% 

Increase in 

r2 

 

Given a 

10% 

Increase in 

vcG 

 

Given a 

10% 

Increase in  

D 

 

Given a 

10% 

Increase in 

ρ 

 

 

Given a 

10% 

Decrease 

in γ 

r1 2% 2.2% 2 %  2% 2% 2% 2% 

r2 4% 4% 4.4% 4% 4% 4% 4% 

vcG $.005/$ $.005/$ $.005/$ $.0055/$ $.005/$ $.005/$ $.005/$ 

D $47.656B $47.656B $47.656B $47.656B $52.422B $47.656B $47.656B 

ρ 40 40 40 40 40 44 40 

γ 12.5 12.5 12.5 12.5 12.5 12.5 13.75 

W
* 

$50.053B $50.149B $48.380B $50.281B $53.248B $48.315B $49.924B 
*R  $  3.020B $  4.299B $  2.947B $  3.527B $ 3.771B $  2.979B $  3.014B 
*G  $17.541B $15.409B $21.649B $16.272B $19.053B $18.122B $17.582B 
*k  $  6.118B $  6.129B $  5.913B $  6.146B $  6.508B $  5.906B $  6.102B 
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Table 3:  Expected Time to Depletion of Bank Liquidity  

With Stochastic Takedown under NB-CR 

(B=billions, d=days) 

 

 

 

 
 

 

Parameter 

 

 

Base Case 

Value 

 

Given a 

10% 

Increase in 

r1 

 

Given a 

10% 

Increase in 

r2 

 

Given a 

10% 

Increase in 

vcG 

 

Given a 

10% 

Increase in  

D 

 

Given a 

10% 

Increase in 

ρ 

 

 

Given a 

10% 

Decrease 

in γ 

*k  $6.118B $6.514B $6.971B $5.982B $5.276B $5.274B $5.370B 

*R  $3.020B $4.419B $2.877B $3.714B $3.914B $2.933B $2.991B 

* [ ]
R

E T  22.02d 32.22d 20.98d 27.08d 28.54d 21.39d 21.81d 
* *R G  $20.561B $19.955B $24.952B $19.930B $22.562B $20.823B $20.321B 

 * * [ ]
R G

E T  149.58d 145.24d 180.45d 145.06d 163.83d 151.47d 147.87d 
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Table 4:  Expected Time to Depletion of Bank Liquidity  

With Stochastic Takedown under B-CR 

(B=billions, d=days) 

 

 

 

 
 

 

Parameter 

 

 

Base Case 

Value 

 

Given a 

10% 

Increase in 

r1 

 

Given a 

10% 

Increase in 

r2 

 

Given a 

10% 

Increase in 

vcG 

 

Given a 

10% 

Increase in  

D 

 

Given a 

10% 

Increase in 

ρ 

 

 

Given a 

10% 

Decrease 

in γ 

*k  $6.118B $6.129B $5.913B $6.146B $6.508B $5.906B $6.102B 

*R  $3.020B $4.299B $2.947B $3.527B $3.771B $2.979B $3.014B 

* [ ]
R

E T  22.02d 31.35d 21.49d 25.72d 27.50d 21.72d 21.98d 
* *R G  $20.561B $19.709B $24.596B $19.797B $22.821B $21.102B $20.590B 

 * * [ ]
R G

E T  149.58d 143.47d 178.01d 144.10d 165.66d 153.46d 149.80d 
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Appendix A 

Suppose that the random variable ( )C t  representing the process in question takes the value 0c at 

time 0t and 1c  at time 1t , i.e., 0 0( )C t c  and 1 1( )C t c . Let me write 0 0 1 1( , ; , )p c t c t  for the 

conditional frequency function of the variable 1c  at time 1t  given the value 0c  at the previous 

time 0t . Notice that the order of the pairs 0 0( , )c t  and 1 1( , )c t  represent the direction of the 

transition. I now consider three epochs of time 0 1 2t t t , with the corresponding variable values

0 1,c c , and 2c where  

0 0 2 2 0 0 1 1 1 1 2 2 1( , ; , ) ( , ; , ) ( , ; , ) .p c t c t p c t c t p c t c t dc    (i)   

I am assuming the usual Markov property that, given the present state of the system, the future 

behavior does not depend on the past. A proof of the equation above can be provided by 

considering first a path from 0 0( , )c t to 2 2( , )c t  through a particular intermediate point 1 1( , )c t . 

The probability of this specific path for a Markov process is 0 0 1 1 1 1 2 2( , ; , ) ( , ; , ).p c t c t p c t c t  Thus the 

total probability for a transition from 0 0( , )c t  to 2 2( , )c t  is obtained by integrating over all 

possible intermediate points, i.e., integrating with respect to 1c as shown above. 

Suppose I consider, for 0 1t t , the difference 

0 0 1 1 0 0 1 1( , ; , ) ( , ; , ).p c t t c t p c t c t     (ii) 

From the expression (i) above, I have 

0 0 1 1 0 0 0 0 1 1( , ; , ) ( , ; , ) ( , ; , )p c t t c t p c t t z t p z t c t dz . 
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Furthermore, I can write 

0 0 1 1( , ; , )p c t c t = 0 0 1 1 0 0 0 0( , ; , ) ( , ; , )p c t c t p c t t z t dz  

                                because clearly 0 0 0 0( , ; , ) 1p c t t z t dz . 

 

From here, I have  

     0 0 0 1 1 0 0 1 1( , ; , ) ( , ; , )p c t t c t p c t c t
0 0 0 0 0 1 1 0 0 1 1( , ; , )[ ( , ; , ) ( , ; , )] .p c t t z t p z t c t p c t c t dz    (iii)         

Rewriting the second term in the integrand in terms of a Taylor expansion, yields 

 

2
20 0 1 1 0 0 1 1

0 0 0 0 0 0

0 0 0

( , ; , ) ( , ; , )1
( , ; , )[( ) ( ) ]

2

p c t c t p c t c t
p c t t z t z c z c dz

c c c
. 

 

So that I have 

 

0 0 1 1
0 0 0 1 1 0 0 1 1 0 0 0 0 0

0

2
20 0 1 1

0 0 0 0 0

0 0

( , ; , )
( , ; , ) ( , ; , ) ( ) ( , ; , ) (iv)

( , ; , )1
( ) ( , ; , ) .

2

p c t c t
p c t t c t p c t c t z c p c t t z t dz

c

p c t c t
z c p c t t z t dz

c c

        

 

Let me now suppose that there exist infinitesimal means and variances for changes in the  
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basic random variable ( )C t defined by 

0

0 0 0 0 0 0 0
0

0

1
( , ) lim ( ) ( , ; , )

t
c t z c p c t t z t dz

t
         (v) 

 
0

2 2

0 0 0 0 0 0 0
0

0

1
( , ) lim ( ) ( , ; , )

t
c t z c p c t t z t dz

t
. 

 

 

I may have to restrict the ranges of integration on the right hand side of (v) to ensure 

convergence, but it is unnecessary to pursue this point in my present non-rigorous discussion. 

 

Finally, dividing both sides of (iv) by t and letting 0t yields: 

2
20 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0

0 0 0 0

( , ; , ) ( , ; , ) ( , ; , ) ( , ; , )1
[ ] ( , ) ( , )

2

p c t c t p c t t c t p c t c t p c t c t
c t c t

t c c c
 

or 

2
20 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0

0 0 0 0

( , ; , ) ( , ; , ) ( , ; , )1
[ ] ( , ) ( , )

2

p c t c t p c t c t p c t c t
c t c t

t c c c
. 

 

Writing 0( , ; )p c c t  as the probability density function of c  at time t  for the time invariant case, I 

have 

2
20 0 0

0 0 0 0

( , ; ) ( , ; ) ( , ; )1
[ ]

2

p c c t p c c t p c c t

t c c c
   (vi)  
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This then is the backward Kolmogorov diffusion equation for a continuous time stochastic 

process. 
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Appendix B 

Consider 

2
0

2

( )

2

0

1
( , ; )

2

c c t

tp c c t e
t

 

 

2 2
0 0

2 2

( ) ( ) 2 2 23/2
2 2 0 0

4 2

2( ) [2 ] 2 ( )( ) 1 1
[ ]

2 42 2

c c t c c t

t t c c t t c c tp t
e e

t tt
 

0
0 2

0

2( )( )
( , ; ) ( 1)

2

c c tp
p c c t

c t
 

 

22

0
0 04 2 2

0 0

( )( ) 1
( , ; ) ( , ; )

c c tp
p c c t p c c t

c c t t
 

 

Substituting into the backward Kolmogorov equation yields (since 0t  has been suppressed in my 

notation I use t  where 
p

t
=

0

( 1)
p

t
) 

 
2 2 2

1 0 0

4 2

4( ) 2 ( )1
( ) ( )[ ]

2 4

c c t t c c t
t p p

t  
 

 

=
2

20 0

2 4 2 2

( ) ( )1 1
( ) ( )[ ]

2

c c t c c t
p p

t t t
 

 

 

2

0 0
1

2 2

1
( ) ( )

1 2[ ]
2

c c t t c c t

t
t

2

0 0

2 2 2

( ) ( ) 1

2 2

c c t c c t

t t t
 

 

 

 

     

2
20 0

0 0

2 2 2 2 2

1
( ) ( )

( ) ( )2

2

t c c t c c t
c c t c c t

t t t
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2 2

0 0

2 2 2 2

( ) ( )

2 2

c c t c c t

t t
,  

  

 

 so ( )p =

2
0

2

( )

21

2

c c t

te
t

     satisfies the Kolmogorov diffusion equation. 
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Appendix C 

 

2
20 1 0 1 0 1

0 0 0

( , ; ) ( , ; ) ( , ; )1

2

P c x t P c x t P c x t

t c c c
 

because if 

 

20 0 0

0 0 0 0

( , ; ) ( , ; ) ( , ; )1

2

p c c t p c c t p c c t

t c c c
 

then 

20 0 0

0 0 0

( , ; ) ( , ; ) ( , ; )1

2

p c c t p c c t p c c t

t c c c
 

then 

1 1 1

0 0 0

2

0 0 0

( , ; ) ( , ; ) ( , ; )
1

2

x x x

p c c t dc p c c t dc p c c t dc

t c c c
 

2
20 1 0 1 0 1

0 0 0

( , ; ) ( , ; ) ( , ; )1

2

P c x t P c x t P c x t

t c c c
. 
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Appendix D 

 

I use 0( ; , )
[ ]

g t c W

t
instead of 0

0

( ; , )g t c W

t
 because I suppressed 0t in the notation. 

 

2 2
0 0

2 2

2
0

2

2
0

2

2
2

0 0 0

( ) ( )3/ 2
2 20 0

3

5/ 2 ( ) 2 2 20
2 0 0

2 2 2

( )

2 0

3
0

1

2

( )

22

3
( ) ( )

2 ( )(2 ) ( ) 22 [ ]
42

(1

2

W c t W c t

t t

W c t

t

W c t

t

g g g

t c c c

W c t W c
g e e

t

t W c
W c t t W c tg

e g
t t

W cg
e

c t

2
0

2

2 2
0 0

2 2

2 2
0 0

2 2

( )

2 0

23

( ) ( )
2

2 20 0

2 23 3
0 0

( ) ( )2
2 20 0 0

2 2 2 23 3

)
[ ]

2

1 1
[ ] [ ]

2 2

( ) ( ) 1
[ ] [ ]

2 2

W c t

t

W c t W c t

t t

W c t W c t

t t

W c t
e

tt

W c t W c tg
e e

c c t tt t

W c W c t W c
e e

t tt t

  
 

I can see that Kolmogorov’s diffusion equation holds because 

 

 

5
2

2
( )0 0 0

2 2 2

( ) ( )0 0

23 3
0

( ) ( ) ( )3
( ) [ ] [ ]
2 22

( )
[ ] [ ]

2 2

W c W c t W c tg
e g g

t t tt

W c W c tg
e e

c tt t

 

 
22

2 ( ) ( ) ( )0 0 0 0

2 23 3 3
0 0

( ) ( )1 1 1 1 1
[ ] [ ] [ ]

2 2 22 2 2

W c t W c W c t W cg
e e e

c c t t tt t t .
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Plugging the right hand side of the three expressions above into the diffusion equation  

 

yields: 

 

5
2

2
( )0 0 0

2 2 2

( ) ( ) ( )3
( ) [ ] [ ]
2 22

W c W c t W c t
e g g

t tt
= 

 

( ) ( )0 0

23 3

( )
[ ] [ ]

2 2

W c W c t
e e

tt t
 

 
2

( ) ( )0 0 0

2 23 3

( ) ( )1 1 1 1
[ ] [ ] [ ] [ ]

2 22 2

W c t W c t W c
e g e

t t tt t
. 

 

 

So then  

 

5
2

( ) ( ) ( )0 0 0 0

2 23 3

( ) ( )0 0

3 3

( ) ( ) ( )3
( ) [ ] [ ] [ ]
2 2 2 2

( )1 1 1
[ ] [ ] [ ],

22 2

W c W c t W c W c t
e g e e

t tt t t

W c t W c
e e

t tt t

 

then 

 

5
2

( ) ( )0 0 0

2 23

( ) ( )0 0

3 3

( ) ( )3
( ) [ ] [ ] [ ]
2 2 2

( )1 1 1
[ ] [ ] [ ]

22 2

W c W c t W c t
e g e g

t tt t

W c t W c
e e

t tt t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and then  
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5
2

( ) ( ) ( )0 0 0 0

2 23 3

( ) ( ) 1
[ ] [ ] [ ] [ ] [ ] [ ].

2 2 2

W c W c t W c t W c t
e g e g e

t t tt t t

 

After further cancellations I have 

 

5
2

( ) ( ) ( )0 0

3 3

( ) 1
[ ] [ ] [ ] [ ]

2 2 2

W c W c t
e e e

tt t t
. 

 

 

And finally 

 

 
2 2

0 0

2 2

5 5
2 2

( ) ( )
( ) ( )

2 20 0( ) ( )
[ ] [ ]

2 2

W c t W c t

t tW c W c
e e

t t
. 

 

 

 

So I have shown the pdf for the time to a bank credit line being completely exhausted satisfies 

the Kolmogorov diffusion equation.  
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Appendix E 

 

The Laplace transform is a method for solving differential equations. For example, consider 

 

( , ) ( )
0.

f x t f
x

x t
 

 

A Laplace transform of a linear combination of two functions is a linear combination of the 

Laplace transforms of each function and because a Laplace transform of zero is zero, I have 

 

( , ) ( )
[ ] (0)

( , ) ( )
[ ] [ ] 0

( , ) ( )
[ ] [ ] 0 .

f x t f
x

x t

f x t f
x

x t

f x t f
x

x t

L L

L L

L L

 

 

I then change the order of the operators on the two terms appearing on the left hand side of the 

expression above 

 

( )
[ ( ) ( ,0)] 0

( )
( ) 0.

f
x s f f x

x

f
xs f

x

L
L

L
L

 

 

This then I regard as an ordinary differential equation in x since derivatives with respect to time 

do not occur in the equation. 
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If ( )fL then I have 

 

0xs
x

 or I have 

 

21

2
0( , )

sx

x s e . 

 

From here I have ( , ) ( )x s fL , but to get ( )f  I need to eventually obtain the solution for the 

Laplace inverse. 
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Detailing the fourth equation above, by definition 
0

( ') '( )stf e f t dtL . 

Using integration by parts 

( )d uv u dv v du  

|

a a

a

b

b b

uv u dv v du  

suppose that 

stv e    '( )du f t dt . 

So that I have  

( ).

stdv se dt

u f t
 

Plugging into our formula 

0

0

0

( ) | ( )

( ) | ( )

( 0) ( ( )) ( '( )).

a

st a st

b

b

st st

f t e s f t e dt

f t e s f t e dt

f t e s f t f tL L

 

Finally, I have 

( '( )) ( ( )) ( 0)f t s f t f tL L . 
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Consider a Laplace transform 

0

[ ( ); ] ( )tf t e f t dtL  

where  is a positive constant such that 
0

[ ( ); ] ( )tf t e f t dtL   converges. 

Consider an example: 

0

0

0

[1; ] [1]

1 1
| .

Consider another example:

[ ; ]

t

t

t

e dt

e

t te dt

L

L

 

           

( )

|

|

a a

a

b

b b

a a

a

b

b b

d uv u dv v du

uv v du u dv

uv v du u dv

 

          
0

0

02 2

1
, , , and

1 1
|

1 1
| .

t t

t t

t

u t du dt dv e dt v e

te e dt

e
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Appendix F 

Consider 

2 2 2 2

0

( , ) a u b uI a b e du . 

If v au , then I can rewrite the expression above as 

2
2 2

2
( )

0

a
v b

ve du  or as 

2 2 2 2

0

1
( , ) v a b vI a b e dv

a
 using v au . 

Again consider the original expression for I(a,b) and take its derivative with respect to b 

2 2 2 22

0

( , )
2 a u b uI a b
b u e du

b
. 

Rewriting the derivative of ( , )I a b , with respect to b , in terms of v  

where this time 
1v bu  , I have  

2 2( )
v

u
b

, 
2dv bu du , which yields  

2
2 2 2

2

0
( )

2 2 12 ( ) ( ) .

b v
a b

v b
v

b e u b dv
b

 

Keep in mind when 0 thenu v and when then 0u v , so I have 

2 2 2 2

0

2 v a b ve dv , so 
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2 2 2 2

0

( , )
2 v a b vI a b

e dv
b

. 

Recall from the top of page 13 

2 2 2 21

0

( , ) v a b vI a b a e dv  

Consequently, I have 

1

( , )

2

( , )

I a b

b

I a b a
 

which implies 
( , )

2 ( , )
I a b

aI a b
b

. 

The solution to the differential equation immediately above is 
2( , ) ( ,0) abI a b I a e , where 

( , 0)I a  is an initial condition.  

2 2 1

0

1
( ,0)

2

a uI a e du a   

1 21
( , )

2

abI a b a e  

Finally, I have 
2 2 2 2 2

0
2

a u b u abe du e
a

. 
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Briefly,  

2 2 2 2 2 2 2 21

0 0

a u b u v a b ve du a e dv , where v au  

2 2 2 2

2 2 2 2
0

0

[ ]

2

a u b u

v a b v

e du

e dv
b

, where 1v bu  

2 2 2 2

2 2 2 2

0

1

0

[ ]

2

a u b u

a u b u

e du

b

a
e du

. 

So I have 

2 2 2 2

2 2 2 20

0

2

a u b u

a u b u

e du

a e du
b

 

2
ab

abe
ae

b
 

so  
2 2 2 2

0

.a u b u abe du e  

The initial condition has b=0 which means   

 

2 2 2 2

0

a u b ue du  reduces to 
2 2

0

a ue du
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and, of course, 
2 2

0
2

a ue du
a

 

so, in general, I have 

2 2 2 2

0

.
2

a u b u abe du e
a

 

In order to demonstrate the usefulness of this result, consider the integral 

2 2

2 2

2 2 2 2

1/ 2 /

0

2 1/ 2

1/ 2

0

0

0

.

Changing the variable of integration necessitates the following substitutions: , , 2

2

2

2

q t t

qu u

u qu

a u b u

t e e dt

t u t u dt u du

t e e u du

e du

e du

where 
2 2, , , and .a b q a b q  

Using the result on page 15 

2 2 2 2 2

0

2 2[ ]
2

a u b u abe du e
a

 

and substituting for a and b yields 
2 q

e      so I have 

21/ 2 /[ ; ]
qq tt e eL . 
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Consider another very important result. Take the derivative of the left hand side and the right 

hand side of the expression on page 15 with respect to q. 

21/ 2 / 1/ 21
1

[ ( ) ; ] ( 2)( )( )
2

qq t

t
t e e qL  

Multiply the LHS and the RHS by (-1) to yield 

23/ 2 / 1
[ ; ]

qq tt e e
q

L  

23 / 2 /[ ; ]
qq tt e e

q
L . 
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Appendix G 

Does 
0

( )g t dt equal 1? 

2 2 2
0 0

2

2 2 20
02 2

0

2

2

0 0

23
0 0

[( ) 2 ( )]

3/ 20 2
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2 2
10

2 2

0
12

( )1 1

3/ 2 2 2

0

( )

3/ 20

0 0

( )
( )

2

W c t
t

W c

qt t

e e dt

W c
g t dt e t e e dt
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2
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 .  

 

According to Appendix F 

 

1 23/ 2

0

qqt tt e e dt e
q

   

2 2
1/ 20 0

2 2 2

( ) ( )
2[ ]

0 2 2
2

00
2

( )
( )

( )2

2

W c W c
W c

g t dt e e
W c

 



81 

 

0 02 2
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( ) 2
( )

( )2
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g t dt e e
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0

( )g t dt 1   . 
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Appendix H 

 

Consider the mean: 

2 2 2
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W c
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Available in Appendix F is the mathematical fact that  

1 1/ 21/ 2 2( )

0
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Appendix I 

 

Given  

( )

( )

( )

h x

g x

y f x dx , according to Leibniz, the derivative of an integral where the limits are a 

function of the variable of differentiation is simply 
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( ) ( )
' ( ( )) ( ( ))

h x

g x

y h x g x
f x dx f h x f g x
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Appendix J 

Consider the probability density function for trended Brownian motion  

2 2
0 0 0( ( )) / 2 ( )

0 0

0

1
( , ; , )

2 ( )

c c t t t t
p c c t t e

t t
 

by observation 0t enters 0 0( , ; , )p c c t t as the mirror reflection of t  and, consequently, 

0

( ) ( )p p

t t
. 
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Appendix K 

Commonly, trended Brownian motion is thought of as  

0 0 0

0

0

0

0

0

2

0

2 2

0

.

However, integrating across the time horizon gives me

( 0)

( )

( ) [ ]

( ) [ ] .

u u

t t t

u u

t

t u

t

t u

t

t

t u

t

t u

dc du dZ

dc du dZ

c c t dZ

c c t dZ

E c c t

V c V dZ

V c E dZ
 

Ito’s isometry allows me to write 

0 0

[[ ][ ]]

t t

u uE dZ dZ  as 
0

t

du  , so I have 

2

0

2

2

0

( )

( )

~ ( , ).

t

t

t

t

V c du

V c t

c N c t t

 

With these characteristics, the pdf for the borrower’s cash needs must be as follows 
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0( ) / 2
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c c t t
p c c t e

t
. 



87 

 

Appendix L 

Let me demonstrate that ( ') ( )f s fL L . 

  Consider  
0

( ') '( )stf e f t dtL  

0

0 0

'( )

( ) .

st

st

udv uv vdu

dv f t dt

u e

du se dt

v f t

 

The integral yields 
0

0

( ) ( )st stf t e f t se dt  

0

( ') ( ) ( 0).stf s f t e dt f tL  

Consequently, I have 

( ') ( ) ( 0)f s f f tL L  

or 

( ') ( )f s fL L . 
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As an illustration consider 
2'( ) 3g t t and the Laplace transform of this derivative would be 

0

'( ) '( )stg t e g t dtL , I contend that '( ) ( )g t s g tL L . 

Given 2

0

'( ) 3stg t e t dtL  

A A
A

B

B B

uv vdu udv  

stu e  

23dv t dt , consequently I have 

3

stdu se dt

v t
 

3 3'( )

A
A

st st

B
B

g t e t s t e dtL  

3 3

0
0

'( ) st stg t e t s t e dtL  

so I have  
0

'( ) ( ) stg t s g t e dtL   or   

'( ) ( )g t s g tL L  

which is what I wanted to show. 
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Appendix M 

A Laplace transform of a linear combination of the functions ( )f t  and ( )g t  is the linear 

combination of the Laplace transform of ( )f t  and the Laplace transform of ( )g t .  

Consider ( ) ( ) ( ) ( )af t bg t a f t b g tL L L  

             because 

0

( ) ( ) ( ) ( )staf t bg t e af t bg t dtL  

0 0

( ) ( ) ( ) ( )st staf t bg t a e f t dt b e g t dtL  

( ) ( ) ( ) ( ) .af t bg t a f t b g tL L L  
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Appendix N 

Consider a detailed determination of Prob{ }R M R GT T T where MT is the time of maturity of 

the credit line which is non-stochastic.  Both RT and R GT are random variables. RT  is the time to 

when the cash needs of the borrower exceeds the bank’s first source of loan funding R , bank 

reserves. R GT  is the time to when the loan drawdown exceeds R G , all the bank’s assets on 

hand to fund the loan commitment.  

I know  

2 2

2 2

2 2

2 2

( ) / 2

2

( ) / 2

2 3
0 0

( ) / 2

2

( ) / 2

2 3
0

1
Prob ( ) ( )

2

0
Prob ( ) ( )

2

1
Prob ( ( ))

2

( ) 0
Prob ( )

2

M M

M M M

M M

M M

M

M

c T T

T T T

R R M

T T

R t t

R M R

c T T

T

R G M

T

R G t t

R G M

C R f c dc e dc
T

R
T T g t dt e dt

t

C R G e dc
T

R G
T T e

t
.dt

 

I also know 

Prob ( ) Prob ( )

Prob ( ( )) Prob ( )

Prob ( ( )) Prob ( ) .

M

M

M

T R M

T R G M

T M R G

C R T T

C R G T T

C R G T T  
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From Bayes, I have  

2 2( ) / 2

2

Prob ( ) Prob{ } ( )

Prob { } Prob{ ( ) }

1
Prob{ } Prob{ } .

2

M M

M M

M

R M R G M R G M R M R

M R G M R T T

c T T

M R T

R M

T T T T T T T P T T

T T T T C R G C R

T T C R e dc
T

 

So I now have 

Prob ( ) Prob{ ( ) } Prob{ }

Prob{ ( )} Prob{ }
Prob ( ) Prob{ }

1 Prob{ }

Prob{ ( )} Prob{ }
Prob ( ) Prob{

Prob{ }

M M M M

M M

M M

M

M M

M M

M

R R G T T T

T T

R R G T

T

T T

R R G T

T

T T T C R G C R C R

C R G C R
T T T C R

C R

C R G C R
T T T C R

C R
}

Prob ( ) Prob{ ( )} Prob{ }.
M M MR R G T TT T T C R G C R

 

Consequently,  

Prob [ ] ( ) ( )

or

Prob [ ] { ( )} .

M M M M

M

R G R

R M R G T T T T

R M R G T

T T T f c dc f c dc

T T T P R C R G
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Appendix O 

(

2 3

Prob ( ) Prob{ } Prob ( )

Prob[ ] Prob[ ]
Prob ( ) Prob ( )

Prob ( )

Prob ( ) Prob[ ] Prob ( )

( )
Prob ( )
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R M R G M R G M R M R

M R G M R
R M R G M R
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R M R G
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T T T T
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T T
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2 3
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Prob ( ) ( ) ( )
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dt e dt

t
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Alternatively 

Prob ( ) Prob{ ( ) } Prob{ }

Prob{ ( )} Prob{ }
Prob ( ) Prob{ }

1 Prob{ }

Prob{ ( )} Prob{ }
Prob ( ) Prob{

Prob{ }

M M M M
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M

M M

M M
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R R G T T T

T T

R R G T
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T T

R R G T

T
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C R G C R
T T T C R

C R
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T T T C R
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Prob ( ) Prob{ ( )} Prob{ }.
M M MR R G T TT T T C R G C R

 

Consequently,  
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Appendix P 

Changes in capital across the simulations in Table 2 necessarily change the level of bank 

operations and, consequently, impact 
*R  and 

*G  as the bank seeks to maximize its intertemporal 

profits.  But just how different are these optimal solutions for bank liquidity from the 

recalibrations of *R  and 
*G  if regulators insisted that the recorded changes in bank scale must 

preserve the existing likelihood of a liquidity shortage.  That is changes in intermediary capital 

can support increases in bank operations or occasion a contraction in the LHS of the bank’s tee 

account but the risk of a depletion of liquid assets must be unchanged.  Characterizing the 

behavior of bank liquidity with this objective in mind is simply a matter of setting the differential 

change in RLS to zero and then invoking the implicit function theorem as in  

 = 0 = 
RLS RLS

dRLS dq dk
q k

 

so that 

q
0

q
0

- 1
g ( )

( 1) ( 1)
1

g ( )

M

M

T

T

t qRLS t dt
dq k

RLSdk t q
t dt

q q t t

 

for ( )q R G  since a bank’s reserves plus its government securities best fits the Federal 

Reserve’s description of “unencumbered, high quality assets”.  Combining the solution to the 

expression above with the differential change in bank capital (recorded in Table 2) yields 

** q
dq dk

k
 

the optimal change in the intermediary’s stored liquidity 
**q  for 0.dRLS   
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From Table 5, it is clear that the changes in “RLS” preserving stored liquidity follow changes in 

*.k  (The direction of changes in the profit maximizing reserves and government securities have 

been detailed earlier in this paper.) Optimal bank capital increases in three of the six comparative 

static simulations and 
**( )d R G  is positive in those experiments.  When 

*k  falls the constant 

“RLS” level of liquidity decreases.  Intuitively increases in intermediary equity occasion an 

increase in 
*W  and bank liquidity is augmented to support the takedown of the enhanced credit 

line so that 0.dRLS   When capital contracts, 
*W  retreats and 

**( )d R G  falls since less 

liquidity is needed to fund the uncertain usage of 
*W  and preserve the “RLS”.  There are 

differences in 
* *( )d R G  and 

**( )d R G  and while the differences are not large relative to the 

magnitude of 
* *( )R G  the changes are in opposite directions in 5 of the 6 simulations.  Whether 

or not the differences are significant could best be determined by the implication the each change 

has for * *( )
[ ]

R G
E T  and **( )

[ ],
R G

E T  respectively.  The expected time to depletion for 
**( )R G  is 

stable throughout the comparative static simulations never straying too far from the base case 

result of 149.58 days.  Given that 
**( )d R G  is an artifact of setting dRLS  equal to zero, the 

stability of the expected time to exhausting stored liquidity is hardly a surprise.  In fact the only 

significant deviations of the expected time to depletion of bank reserves, primary and secondary, 

should be a pleasant surprise to bank regulators.  In Table 6, parametric changes for two of the 

simulations dramatically increase the profit maximizing level of 
* *R G  and occasion increases 

in * *( )
[ ]

R G
E T  to 180.45 days and to 163.83 days. 
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Table P1:  RLS Preserving Changes in Bank Liquidity Associated with  

Optimal Changes in Intermediary Capital 

(B=billions) 

 

 

 

 
 

 

Parameter 

 

Given a 

10% 

Increase in 

r1 

 

Given a 

10% 

Increase in 

r2 

 

Given a 

10% 

Increase in 

vcG 

 

Given a 

10% 

Increase in  

D 

 

Given a 10% 

Increase in 

ρ 

 

 

Given a 10% 

Decrease in γ 

*dk  $0.011B $-0.205B $0.028B $0.390B $-0.212B $-0.016B 

* *( )d R G  $-0.852B $4.035B $-0.764B $2.260B $0.541B $0.029B 

**( )d R G  $0.084B $-0.573B $0.215B $1.092B $-0.627B $-0.123B 

 

 

 

 

Table P2:  Expected Time to Depletion for RLS 

Preserving Changes in Bank Liquidity 

(B=billions, d=days) 

 

 

 

 
 

 

Parameter 

 

Given a 

10% 

Increase in 

r1 

 

Given a 

10% 

Increase in 

r2 

 

Given a 

10% 

Increase in 

vcG 

 

Given a 

10% 

Increase in  

D 

 

Given a 10% 

Increase in 

ρ 

 

 

Given a 10% 

Decrease in γ 

*dk  $0.011B $-0.205B $0.028B $0.390B $-0.212B $-0.016B 

* *( )
[ ]

R G
E T  145.24d 180.45d 145.06d 163.83d 151.47d 147.87d 

**( )
[ ]

R G
E T  150.19d 148.27d 151.13d 152.79d 147.89d 148.71d 
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 End Notes 

                                                 
1 Bank capital has attracted the interest of academic researchers for a long time. As Berger, Herring, and Szego 

(1995) suggest, some of the most fundamental  bank capital questions revolve around  such intertwined issues as the 

optimal amount of bank capital , the amount of capital that regulators require banks to keep, and the amount of 

capital that banks actually choose to keep.  Many researchers have analyzed how bank capital requirements affect 

the financial system.  Kim and Santomero (1988) suggest that the effect of capital requirements on bank safety 

depends on the intermediary’s attitude toward risk. That is, some banks with relatively little risk aversion may 

respond to greater capital requirements (that may decrease return on equity) by increasing the riskiness of their asset 

portfolio while other more risk averse banks may not be impacted at all.  Jeitschko and Jeung (2005) challenge the 

idea that well-capitalized banks are less inclined to increase asset risk  and assume three agents --- deposit insurers, 

shareholders, and managers--- collectively determine bank riskiness. (Such banks with strong capital will are not 

inclined to increase asset risk because the option value of deposit insurance decreases with capitalization.) Kopecky 

and VanHoose (2004) analyze the potential conflict between bank regulators and monetary authorities.  In particular, 

they make capital an endogenous variable and examine loan expansion assuming both binding and nonbinding 

capital requirements.  VanHoose (2007) summarizes theories of bank behavior under capital regulation and suggests 

that the theoretical foundations for capital requirements are very questionable.  That is, greater capital requirements 

do not necessarily lead to safer banks and he argues that more research is needed. (Given the complaints that many 

bankers make about attempts by regulators to require greater capital, it is surprising that Flannery and Rangan 

(2008) find banks held 75% above regulatory capital minimums in the early part of the 21st century.   Furthermore, 

Allen, Carletti, and Marquez (2009) also find that banks hold more capital than regulators require which is attributed 

to monitoring theory where asset side discipline, as opposed to threats of deposit runs, can be very important.) 
 

 
2 
From October of 2008 to July of 2009, bank loans fell at an average weekly rate of .05%. While it is unclear how 

much of this decline is due to the supply side of the market and how much is attributable to a leftward shift in the 

demand schedule, there are reasons to believe that loan demand did contract.  Besides the weak economy, the 

demand for bank loans may have fallen in this period because of the success of programs initiated by the Federal 

Reserve to support market-based financing.  For example, the Federal Reserve announced the Commercial Paper 

Funding Facility (CPFF) on October 7, 2008, which became fully operational on October 27, 2008.  It served as a 

lender of last resort for the commercial paper market, with the Federal Reserve directly financing purchases of 

commercial paper.  This program gave non-financials easier access to commercial paper funding, and they had less 

of a need to rely on credit lines from banks.  We interpret this market intervention by the Fed as providing borrowers 

with another source of funds.  Consequently, we record the development of the “CPFF” as a change in the elasticity 

of the demand for loans and characterize the impact of the change upon bank capital and depository assets. 

 

 
3
 We model the cash needs of the borrower as trended Brownian motion, 

2 2( ) /21
( , ; ) ,

2

oc c t t

op c c t e
t

 
so that the loan applicant’s cash demands at any point in time “t”, are normally distributed. (The borrower’s cash 

needs have unbounded support in this paper. Consequently, problems of negative cash needs can arise. Throughout 

the paper, the non-negative constraint is ignored for simplicity. The probability of a borrower having negative cash 

needs can be made arbitrarily small by the appropriate choice of the underlying statistical parameters that we use to 

characterize ( , ; ).op c c t )   If borrower demands are expected to grow rapidly then the parameter µ will be relatively 

large.  If there is a great deal of uncertainty regarding the loan recipient’s financial needs then σ will be large.  Using 

p(co,c;t), we are able to characterize the borrowing from the bank over time.  In addition, the statistical properties of 

trended Brownian motion allow us to derive a probability density function for the time to depletion of the loan 

account, as well as likelihoods for the time to exhausting the respective bank assets that fund the loan takedown. 
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4
 When a bank agrees to fund a loan commitment, it faces many risks as it seeks to maximize the expected  profit 

associated with the issuance of a line of credit. Since loan takedown by the customer is stochastic, a bank must stand 

ready to provide to the borrower an uncertain amount of cash, up to the contracted maximum amount. On the 

liability side of the balance sheet, the level of customer deposits varies over time and adds to the uncertain 

availability of liquid assets. In addition, the vagaries of the marketplace impact the cost of converting illiquid assets 

into cash for the loan recipient. Finally, there may be times when external capital needed to provide funds for a loan 

takedown may be prohibitively expensive or not available at all. The earliest work to specifically address these 

problems is by Deshmukh, Greenbaum and Kanatas (1982). They model a bank as a seller of loan commitments in 

alternate funding environments to solve the “simultaneous lending-financing problem”. The bank funds loans using 

a mix of deposits and purchased money. The authors argue that as the bank maximizes profits, it must consider the 

cost of funding along with the returns on assets and loans to find its optimal commitment volume. Kashyap, Rajan, 

Stein (2002) provide evidence that banks are the most efficient providers of liquidity to commercial firms. In a new 

approach to studying the bank’s funding risk, the authors argue that aggressive credit line usage by borrowers during 

economic downturns is accompanied by high deposit growth as non- commercial customers seek a safe haven for 

their cash. During economic booms, commercial firms generate large amounts of cash internally and do not access 

their credit lines. At the same time, depositors are more likely to hold alternative financial assets such as money 

market accounts, which would lead to a decrease in the level of bank deposits. Therefore, when banks are in the 

greatest need of liquidity, customers happen to provide the necessary deposits, and when surplus funding would 

otherwise exist, deposit disintermediation occurs. Gatev and Strahan (2006) discuss and extend the KRS model by 

using commercial paper (CP) spreads (over the T-Bill rate) to analyze loan commitment exposure by banks. When 

this spread widens, it becomes more expensive for firms to procure short term funding in the CP market, thereby 

restricting corporate liquidity. In this environment, existing credit lines become the preferred, if not the only, source 

of borrowing.  The authors find that banks increase liquid asset holdings during periods of higher risk (larger CP 

spreads) in order to fund anticipated takedowns. During times of elevated risk, banks can gather funds at lower rates 

than competitors since their customers are anxious to park their financial assets in the safest location possible. 

Gatev, et al (2007) examine bank liquidity risk by testing if the equity market distinguishes between banks that have 

low deposit funding and high loan commitment exposure, and those that do not. By using bank equity volatility as a 

proxy for market uncertainty, the authors’ empirical findings confirm that investors can differentiate between banks 

that have heterogeneous levels of funding risk. Landskroner and Paroush (2008) present a model of asset-liability 

management by a bank that offers loan commitments. If a bank must be ready at all times during the commitment 

contract to provide cash to its borrowers, there can arise a potential liquidity gap that banks must be willing to 

breach with either the conversion of assets or securing external funding. The authors show that a bank’s liquidity 

risk increases as competition in the banking sector grows. This change in bank competition results in greater demand 

elasticity on the part of the borrowers and the supply elasticity of depositors, which leads to more balance sheet 

volatility. The credit line literature also includes papers that examine liquidity risk from the borrower’s point of 

view. Sufi (2008), in his study of corporations with used and unused lines of credit, demonstrates that firm cash flow 

is a strong predictor of whether a firm uses credit lines or cash in managing liquidity. The authors find that firms 

with higher credit risk need increased cash flow in order to establish a credit line; they also show that loan takedown 

is positively correlated with whether a firm faces capital market frictions such as illiquid debt markets, burdensome 

regulations, or high transaction costs. These frictions make it more costly to issue debt in public markets and 

encourage borrowing from the credit line. In a study of international corporate credit markets, Lins, Servaes and 

Tufano (2008) analyze what type of firm is more likely to use lines of credit to maintain corporate liquidity. Firms 

can choose between holding high levels of cash, keeping a line of credit open or a combination of both. According 

to this study, firms (on average) maintain a line of credit equal to 15% of book assets.  
 
5
 Please see Appendix B for a heuristic derivation of the Kolmogorov diffusion equation.  

 
6
 Please see Appendix C and D for demonstrations that 

0( , ; )P c W t and 
0( ; , )g t c W , respectively, satisfy 

Kolmogorov’s diffusion equation. 

 
7
 Please see Appendix B for a demonstration of the fact that trended Brownian motion satisfies the Kolmogorov 

diffusion  equation. 
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8
 Please see Appendix E for a brief tutorial on Laplace transforms. 

 
9
 That is 

2

WA e . 

 
10

 Clearly when 
0c W , then ( ) 1W . In general, the inverse of ( )W is    

2

0 0
0 23

( )
( ; , ) exp[ ].

22

W c W c t
g t c W

tt

 

 

If  W is the starting value  for 0c  then ( )W is equal to 1, so that we have 
0( ; , )g t c W =0. 

 
11

 Even the most casual reader will recognize that what we call “time to loan depletion” is what statisticians call the 

“time to first passage”. Please see Bailey (1964), Barlett (1955), Bharucha-Reid (1960), Darling and Siegert (1953), 

Doob (1953), Feller (1957), Parzen (1962) and Uhlenbeck and Ornstein (1930) for the background analysis that 

enabled us to derive the probability density for the time to loan depletion. 

 

12
 Please see appendix I and then appendix J for confirmation that 

0

( )g t d t = 1 and that

 

0

0

( ) .
W c

t g t d t  

 
13

 While is included in our intertemporal profit function, it is not clear that the non-usage fee is a decision variable 

in this particular analysis.  Shockley and Thakor (1997) maintain, along with Greenbaum, et al (1991), that  serves 

as a device to sort firms into different borrower "types", which gives the bank information about the firm that cannot 

otherwise be revealed. Other research, such as Denis, et al (2000), finds that is used in loan contracts by firms that 

have multiple commitments, since they will likely have more unused loan capacity. The authors also argue that firms 

that choose longer maturities and have greater overall leverage tend to enter into contracts with a non-usage fee. 

Boot, et al (1987) illustrate how serves to mitigate underinvestment by the borrower. Thakor and Udell (1987) 

explain how non-usage fees help banks overcome information asymmetry problems. Clearly these papers assign an 

informational role to , not one that is related to credit line pricing per se. Consequently, in our analysis, the value 

of  is given exogenously. 

 
14

 The recent credit crisis has highlighted the importance of overnight lending by financial institutions. A Bloomberg 

article ("Money Rates Double Amid Global Credit Seizure", 9/16/2008) reports that overnight lending rates have 

risen dramatically in the face of the recent disruptions in the financial markets, from 3.33 % to 6.44 %, its biggest 

jump in seven years. The Financial Times ("Overnight Lending Still in Lockdown", 10/4/2008) confirms that the 

recent upheaval in the credit markets has impacted the interbank lending market, leading to a great deal of instability 

in the banking sector. Overnight lending typically occurs in the “Fed funds” market and allows lenders to earn a rate 

of return on otherwise idle funds. Fed funds are overnight borrowings by banks to maintain appropriate levels of 

reserves at the Fed. Funds available for investment in overnight lending are represented by R in our analysis. The 

bank in our model earns a modest rate of return on this highly liquid asset. In practice, many different financial 

institutions participate in the Fed funds market, including commercial banks, thrift institutions, agencies and 

branches of foreign banks in the United States, federal agencies, and government securities dealers. Most of these 

transactions occur on Fedwire, a transfer system operated by the Federal Reserve. From 2000-2007, over $2 trillion 

per day passed through Fedwire, on average. To put this in perspective, the total average daily volume of global 

foreign exchange trading is $3.2 trillion. In 2008, however, the daily volume of transfers on Fedwire has surged to 

$3 trillion per day on average (National Settlement Services Quarterly Data, Q2 report). This growth in daily 

transfers reflects the recent distress in the credit markets, leading to a propensity for banks to lend and borrow in 

highly liquid, low-risk assets at overnight rates. This increase in trading volume is caused by rightward shifts in both 

the demand and supply schedules for short-term funds, with the former shift being larger than the latter. On the 

demand side, banks that previously found accessible sources of liquidity for the left hand side of their balance sheets 

are forced to borrow Fed funds just to satisfy reserve requirements. On the supply side, banks are hesitant to lend 

money in long-term markets, due to risk aversion in the banking sector after a series of high-profile bank failures 



101 

 

                                                                                                                                                             
(such as WaMu) in the summer of 2008, and thus they move their assets into overnight markets. The academic 

literature has analyzed the overnight market for funds.  Furfine (2001) studies the role of credit risk in overnight 

loan pricing. Bartolini, et al (2005) describes the microstructure of this market. Ashcraft and Duffie (2007) detail the 

pricing and allocation of overnight loans with an analysis of the determinants of the likelihood of institutional 

lending at a particular time and day.   
 
15

 Clearly the bank’s expected profits depend upon the time to when R, G and the credit line are each depleted. 

Using the statistical properties of the borrower’s cash needs, we find that the time to depletion to each of these three 

accounts satisfy Kolmogorov’s diffusion equation. The solution to each of the three differential equations allows us 

to determine the probability density function of the time to depletion to each account; the loan account, R and G. 

Since solving for the time to exhaustion of any one of the accounts is much like solving for either of the other two, 

our analysis here will emphasize the time to depletion of the bank’s credit lines and the time to depletion of the 

remaining accounts will just be utilized in this paper without explanation. 

 
16

 Over the last 30 years, due to advances in banking technology, banking competition, and the globalization of 

financial markets, bank asset conversion costs have certainly fallen. However, in the commercial banking industry 

asset liquidation costs still exist and they continue to be an aspect of academic models used in banking research. 

Stein (1998) presents a model in which a bank has two assets, loans and securities. Loans are costly to convert to 

cash while securities have no liquidation costs. The bank is subject to random customer demands for cash. If the 

bank only lends, then it may eventually be forced to sell some portion of the loan and pay liquidation costs to 

accommodate customer liquidity needs.  If the bank holds only government securities, for example, it can easily 

convert the securities to cash, but the intermediary receives a lower rate of return on the securities. The bank’s 

dilemma is how it will allocate its portfolio of loans and securities over time as it manages this trade-off between 

higher rates of return and potential conversion costs. Diamond and Rajan (2005) analyze how the asset side of a 

bank’s balance sheet can be a source of liquidity shocks. The authors assume that loans, which represent the bank’s 

investment “projects”, cannot be sold for full value before maturity. Since the bank must respond to demands for 

immediate liquidity by depositors, the bank may have to sell a loan at a discount in order to fund these cash needs. 

The reduced value of the loan, of course, represents a liquidation cost to the bank. Wagner (2007) develops a model 

in which a bank holds two assets, loans and reserves. The author derives the optimal configuration of bank assets 

when the depository institution seeks to maximize expected profit and yet manage the likelihood of a bank run. In 

Wagner’s model, proportional conversion costs impact the first order conditions for the bank’s decision variables.   
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 In order to convert treasuries into funds for financing a loan takedown, a bank must stand ready to make 

transactions in the capital markets on a daily basis. The decisions involved in effecting these trades are likely made 

by the bank’s own financial managers located on a trading desk at corporate headquarters. Whether a bank actually 

makes daily trades for billions of dollars, or a monthly trade for as little as a million dollars, the bank must maintain 

an operation capable of gathering market information and executing trades to fulfill the needs of loan commitment 

customers. Also, it is likely a support staff is employed by the bank which assists the asset management team. This 

“back office” team of financial professionals is another fixed cost to any bank that converts assets into cash for a 

loan takedown. The banking literature includes several papers that discuss the fixed costs that financial institutions 

must pay in order to participate in the business of lending money. Pulley and Humphrey (1993) study cost 

complementarities within a bank’s lending operation, which include branch offices, computer technology, and 

accounting services as necessary fixed costs. The authors also study the economies of scope in different banking 

markets and how the aforementioned fixed costs are distributed. Song and Thakor (2007) construct a fragility model 

to demonstrate how banks optimally match their assets and liabilities in the face of withdrawal risk by customers. In 

their model, the bank must pay a fixed investment (cost) to provide “liquidity services”, or core deposits. The 

authors argue that the fixed costs represent  “the bank’s investment in the infrastructure of branches” and 

“transaction services”. 
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2FC is set equal to zero in the simulations due to the difficulty of providing a numeric characterization of the 

fixed costs of converting G into R . 
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 Please see Appendix N for a detailed explanation. 
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 Media coverage of the credit crisis of 2008 has highlighted the importance of the interbank lending market. The 

New York Times (“No Sign That Lenders Will Thaw” 10/12/2008) reports that the stability of global credit markets 

depend greatly on interbank lending rates. The BBC News (“Interbank Lending in Deep Freeze” 10/10/2008) 

explains how short-term lending markets have seized up in the face of multiple bank failures. Banks borrow and 

lend money in the interbank market in order to manage liquidity and meet reserve requirements. In particular, banks 

need to hold an adequate amount of liquid assets to accommodate both loan takedowns by borrowers and potential 

withdrawals by depositors; otherwise, it will need to borrow money in the interbank market to cover the shortfall. 

Banks with excess liquidity will lend money in the interbank market, receiving interest on the assets. Interbank loans 

can be short-term, such as “overnight” lending, or longer term, up to one year. There is a wide range of published 

interbank rates, including the LIBOR (the London Interbank Borrowing Rate), which is based on the average rates 

on loans made within the London interbank market. In our model, the two liquid assets that can be easily converted 

to fund borrower takedown are R , which represents excess reserves held by the bank available for overnight 

lending and G , short-term Treasury securities. The bank can choose to invest excess reserves at 1r , which would 

earn the lowest rate but offers the lowest conversion cost. In order to receive a higher rate of return, the bank can 

invest in Treasury securities and make 2r ; generally the bank holds both R  and G . If the loan takedown by the 

borrower exceeds the bank’s stored liquidity, then the bank turns to interbank markets to raise funds. Due to this 

shortfall, the bank secures a term loan in the amount of B  at 3r  (typically one, three, six, or twelve months in 

maturity).  Shorter term borrowing would not be appropriate in this case, since the bank’s intertemporal needs may 

be as long as the existing time to maturity of the loan commitment. Many academic researchers have discussed the 

importance of interbank lending markets. Rochet, et al (1996) present a theoretical model of interbank lending.  

King (2008) discusses credit risk and interbank lending.  Carletti, et al (2007) explains how mergers influence 

interbank markets and aggregate liquidity.  Dinger and Hagen (2007) show how interbank lending lowers risk for 

borrowing banks. Michaud and Upper (2008) use LIBOR rates to explicate the relationship between credit risk and 

liquidity in interbank rates. 
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 Many of our choices for the illustrative values used in the simulations can be challenged.  However, it is our intent 

to demonstrate that the model obtains numeric solutions to the FOCs and to establish the robustness of those 

solutions.   
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 Newton’s approach to the numeric solution of (24) was chosen for its simplicity and its convergence properties. 


