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Abstract

The main objective of this paper is to addressannintertemporal framework, the issue of using
storable commodity futures as vehicles for hedgagposes when, in particular, the convenience yield
as well as the market prices of risk evolve rangoaover time. We derive optimal demands of an
unconstrained investor endowed with a CRRA utflityction. We suggest various decompositions of
this demand allowing an investor to assess the éimpheach and every state variable on optimal
demands and to specify the role played by eacly asket. In particular, the convenience yield has a
strong impact on the speculation and hedging compisnand its orthogonal risk is hedged by the
futures contract. Moreover, optimal demands carcéraputed in a simple recursive way, which,
combined with quasi-analytical solutions, may fiéaié the use of our model for practical
considerations.
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1. Introduction

Futures markets have experienced a dramatic gravatidwide, of both trading volume and contracts
written on a wide range of underlying assets. THeatures make it easier to use futures contracts a
hedging instruments against unfavorable changd®imvestment opportunity set, i.e. changes itesta
variables describing the economic/financial enuinent. The growing activity of these markets has
been accompanied, since the original normal badkaten (Keynes, 1930; Hicks, 1939) and the
theory of storage (Kaldor, 1939; Working, 1949; idran, 1958), by a substantial body of literature
devoted to pricing and hedging with futures contaBesides, commodities are considered by fund
managers as an alternative asset class to traglitiassets such as stocks and bonds. Indeed,
commodities are supposed to be good (stocks andshquortfolio diversifiers, and efficient hedging
instruments against the inflation risk. Althoughsignificant empirical literature examines thes® tw
commodities’ properties (see, for example, Erb ldadvey, 2006; Gorton and Rouwenhorst, 2006; Kat
and Oomen, 2007 ; Daskalaki and Skiadopoulos, 2@dIhe best of our knowledge, there is no paper
dealing with the question of how to hedge riskshwsbmmodity futures, in particular. The main
objective of this paper is to address, in a cowtirsdtime context, the issue of using storable
commodity futures, by an unconstrained investas vehicles for hedging purposes.

An abundant literature has been devoted to pricorgmodity futures The models developed
explain the evolution of the futures prices througlke random evolution of several relevant state
variables. The stochastic processes of these Vesiabre specified exogenously. The convenience
yield, in accordance with the theory of storagensuout to be the crucial variable, which constisut
one of the main differences between spot commaquiges and prices of financial assets. The recent
sharp increase and then fall in commodity prices hevived the interest in commodity risk
management. Futures contracts are major tools lms@uvestors for hedging in order to mitigate their

exposure to changes in commodity prices. Surpiiginghile there are a number of models dealing

! The unconstrained investor adlowed to freely trade on the primitive assetsnaly the underlying spot asset and, if need
be, other risky assets.
2 See, for instance, Gibson and Schwartz (1990)w&kth (1997), Hilliard and Reis (1998), Milterserda®chwartz (1998),

Yan (2002), Sorensen (2002), Nielsen and Schwa@@4), Casassus and Collin-Dufresne (2005) and Clesiaeal. (2009).



with futures hedging, to the best of our knowledtpe, specific case of commodity futures contracts
with a stochastic convenience yield has not yehleetelressed in the relevant literafutdowever, it is
widely recognised that the convenience yield evlv@domly over time resulting in a stochastic
investment opportunity set. Thus, in a multi pergatting, non-myopic investors have a demand for
intertemporal hedging stemming from the convenieyiedd risk. Moreover, a growing number of
empirical studies on commodity return predictapititress the important role of the conveniencedyiel
in particular (see, for instance, Fama and Freh®By7, 1988; Besembinder and Chan, 1992; Khan et
al., 2007; Hong and Yogo, 2009). In addition, tiedence of predictability is consistent with time-
varying risk premiums in commodities. In our enuinzent, to the extent that spot commodity prices,
futures prices and inventory decisions are reldses, for example, Brennan, 1958; Litzenberger,
Rabinowitz 1995; Routledge et al., 2000), we waXgect market prices of risk to be stochastic. This
is in line with some papers studying optimal assdktcation with stochastic prices of risk (see, for
example, Kim and Omberg, 1996; Lioui and Ponce@12@rennan and Xia, 2002; Wachter, 2002;
Detemple et al., 2003; Sangvinatsos and Wacht@§;20oui, 2007; Liu, 2007).

This paper provides a model of optimal demand ¢batd better account for the way both the
stochastic convenience yield and stochastic (gffinarket prices of risk affect the optimal demaid o
an unconstrained investorn order to do so, the economic framework retdires spot commodity
price, the instantaneous interest rate and theetvence yield as the relevant imperfectly correlate
mean-reverting state variables associated withdyimamics of the futures priteThe optimal demand

for commodity futures contracts is derived for amveistor who maximizes the expected constant

3 An exception is Hong (2001) whose economic envirentnand objective differ considerably from ourghiat he examined
the impact of a stochastic convenience yield on tdren structure of open interest, i.e., the totaimher of contracts
outstanding.

4 Other theoretical models examining dynamic asketation with futures contracts (see, among othkis, 1984; Stulz,
1984; Adler and Detemple, 1988a, b; Duffie and dank 1990; Briys et al., 1990; Duffie and Richardst891; Lioui et al.,
1996) deal with a constraint utility maximizer irster.

® As the goal of this paper is not the valuatiorfutéires contracts per se, we follow the referencelets in the literature,
Schwartz (1997), Hilliard and Reis (1998) and Casassul Collin-Dufresne (2005), and choose these ttogenonly used

and well identified variables. However, the settiag be extended to a multidimensional state vimsadpace.



relative risk aversion (CRRA) utility function ofeh (his) lifetime consumption and final wealth by
following the no-arbitrage martingale approach @aas, Lehoczky and Shreve, 1987; Cox and
Huang, 1989). This framework takes into accountrttaén characteristics of commodity markets and
provides explicit solutions up to resolution of imaty differential equation (ODES) (see Liu, 208a%)

the optimal unconstrained investor's demand, wlisctlassically composed of a speculative part and

of a hedging term.

A thorough study of the speculative and of the rgilgomponents allows us to enrich the
analysis of optimal demands by going beyond thestiej studies by suggesting various
decompositions. This is accomplished by introdudinip the economic framework two synthetic
assets replicating the orthogonal sources of fiskeinterest rate and the convenience Vidlisually,
in a continuous-time framework, papers obtain ganErmulae for these two components without
deriving specific formulae for each asset. In thsecof futures contracts for a constrained investor
Adler and Detemple (1988 a, b) suggested expresdionthe futures contract and the spot. We
generalize this result along the lines of our fresmk by deducingthe individual speculative and
hedge proportions invested in the spot commoditiseount bond and the futures contract, which may
be computed in a useful recursive way underlyirggititeractions between risky assets demands. The
position, short or long, in each asset, may theeef® easily calculated and the economic importance
of some commodity markets features may be examimegarticular, simulations reveal that mean-
reversion in the state variables and in the prifedsk as well as the correlation between theestat
variables determine the sign of the speculative taadtjing positions. Moreover, the volatility of the
convenience yield and the price of risk associatgth it appear to play a prominent role in
determining these positions.

As a consequence of the calculation of the indi@ichroportions for each asset, our analysis

clarifies the role played by the primitive assatd ¢he futures contract when speculating and hegdgin

® An orthogonal source of risk is related to thestorction of correlated Brownian motions. It corresgs to the Brownian

motions associated with the short rate and theemience yield, which are not correlated with thet smmmodity price.



Our analysis also calls into question Breeden (1984ulf by assigning primitive assets a specific
task: hedging the orthogonal risk of the (log) spotmmodity and the short rate. Besides, the
orthogonal risk associated with the conveniencl yseuniquely hedged by the futures contract.

An important question is to know which state valeabshould be included in the investment
opportunity set and how they affect optimal demaridge relevant literature has not explored this
guestion. In our model, the investor is able teeasshe influence of the state variables on hej (hi
optimal demand and can therefore rule on the ravaf the investment opportunity set. Indeed, the
impact of the state variables on the optimal heglgiroportions is measured through the sensitiviity o
an investor-specific bond on the state variablespeEially, simulations show that the convenience
yield has a strong effect on the speculative priigoand on the hedging proportions as well for the
three risky assets, while the effect of the shate s less pronounced.

The remainder of the paper is organized as folldwsection 2, the economic framework is
described and the investor’s optimization problerformulated. Section 3 is devoted to the derivatio
of the optimal asset allocation for the unconstadimvestor. An illustration of the behavior ofghi
demand, via a numerical example, is given in saatioSection 5 offers some concluding remarks and

suggests some potential future extensions. Alptieefs have been gathered in the Appendix.

2. The general economic framework

Consider a continuous-time frictionless economye Thcertainty in the economy is represented by a
complete probability spac€( F, P) with a standard filtratiorF :{Ft :tD[O,T]}, a finite time period

[0, T] with T > O, the historical probability measufe and a 3-dimensional vector of independent

standard Brownian motionsz(t)'=(zs(t),zu(t),zv(t)), defined on (Q,F), where' stands for the

transpose.

! Only one model(Breeden, 1984) studied optimal hedging in commoftiitures markets (the convenience yield is not
modelled) in the case of an unconstrained investwen the futures contracts are written on the stat@bles and have

instantaneous maturity. As a consequence, thetprandssets are ineffective in hedging the risthefstate variables.



In this section, following Schwartz (1997), Hillthand Reis (1998) and Casassus and Collin-
Dufresne (2005), three imperfectly correlated fexctare assumed to be associated with the dynamics
of the futures prices: the logarithm of spot comityogdrice, X(t) = Ln (S(t)) the instantaneous riskless
interest rater(t), and the instantaneous convenience yi&ld, In the sequel of the papet,(.) andg,
stand for the market prices of risk related to stege variables and the strictly positive instaatars

volatility of the state variables respectively, lehg;, withi# j , denotes the correlation coefficient for
i=X(t),r(),ot). Z,,withkz| represents either the covariance betweeraisets or between the

assets and the state variablégt) =[X(t) r(t) J(t)]' is the vector of the state variables that

describes the economy.

X(t) satisfies the following stochastic differentiab@tjon (SDE hereatfter):
dXx(t) = (r (t) = O(t) + oA, (X(t),r(t),o(t) —%agjdt + 0,0z (t) (1)

with initial conditionLnS(0ELNS
The short rate is governed by the following stothgsocess:
dr(t) =(@(t) - ar @©)dt + o, [ o, dz (1) + p,d7, (V)] 2)
with initial condition r(0)=r. The drift in the stochastic process of the shate is a deterministic

function, J(t), such that the model incorporates all the inforomatpresent in the current term

structure (see Hull and White, 1990; Heath et al., 1992).
_ ofr0t) , _— .
I(t) =af (O,t)+T+ar D,,(t) + p,0.4,,, wheref(0,t) describes the initial forward yield curve

and D,, (t) = (1—e'2"‘)/a. a is the constant speed of mean reversion of the shie, A, , is specified

below andg, =+/1-pZ .

The instantaneous convenience yield evolves sttichlg over time by following a mean-

reverting process:
da(t) = k(3 - o) )t + 7, [ p,dz, (1) + £,,07, (1) + 2,07, ()] 3)

with initial conditiond0)=4J. The convenience yield has a tendency to revextdonstant long-run



convenience yieIdS, with a speed of mean-reversikrEmpirical studies (see Fama and French 1988,

and Brennan 1991) found that the convenience wetiild be specified by a mean-reverting process.
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The market prices of risk associated with the stateables are not constant but stochastic and
depend on the levels of the state variables. Tawalbr an analytical tractability of our model, wet
for an affine specification of these prices of rislssuming random prices of risk differentiates our
model from the vast majority of the models explgroommodity futures pricing (a notable exception
is Casassus and Collin-Dufresne, 2005). More saifly, with regard to our study, stochastic psice
of risk related to each state variable also dististy our model from those dealing with dynamic aisse
allocation and hedging which usually consider amtg stochastic price of risk (see also Sangvinatsos
and Wachter, 2005; Liu, 2007). This will have kegplications on the investor’'s optimal portfolio
rules. To characterise the dependence of the sm& pn the level of inventories (see, for instance
Brennan, 1958; Dincerler et al. 2005), the pricerisk associated with the (log) of the spot price
process is an affine function of the level of bditle (log) of the spot price and the convenience

yield:/lx(X(t),J(t))zAXO + A, X(t) + A,,0(t). The prices of risk related to the interest ratd ¢he
convenience yield are also affine functiodr(t))=A,+A,r(t) and A,(3(t))= A, +A50(t).

Asor Asxs Axss Aros A » Asp @NAA; @re constantsi(t) is a stochastic vector of the market prices df ris

m?

A )
At) = —%umwi4ﬁ> =, +AX (D) (4)

ur ur

PsPis= PPy (1) Pos_ ) 1)+ A1)
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where A, and/, are given in Appendix A.

In addition to the spot commaodity, there are ineébenomy a locally riskless asset, the savings

t
account, such thatg(t) =exp{fr(s)ds}, with initial condition S(0) = 1 and two risky traded assets.
0

The first risky security is a discount bond with tavély T,, whose price, at tim¢ 0<t<T,, is



B(r.t,T,) =B(t,T,) =exg-r(t)D, (t,T,) +C(t,T,)}. The second additional risky asset is a futures
contract written on a commodity with maturity,,, whose price, at dat¢, 0<t<T, <T,,
H(Y(t),t,T,) =H(t,T,) =exgd X (t) - o(t)D, (t, T, ) +r(t)D, (t, T,) + K(t,T,)} . D (t, y) = @— ™)/ x
and C(T,,T,)andK(T,,T, ) are deterministic functiofis Assuming that the risky securities price

functions are twice continuously differentiable time state variables, their price dynamics can be

written as follows:

LEL)

S(t) Hs (D) (8 0 0 dz(t)

T || LT | o0l T) p00T) O ()| @
et | T (0stT) o,tT) -o,aT)Ldzw

HET,)

dv(t) = 1, (O] u()dt + odz(t)]

with the initial conditionV(0)=V. V(t)=[S(t) B(t,T,) H(t,TH)]', l,(t) is a diagonal matrix,
M), s (), 1 (8, Ty )andy, (t,T,) represent the instantaneous expected rate ofnsetrthe vector
V(t), the spot price, the discount bond and the futymse respectively.o is the 3-dimensional
volatility matrix, which is of full rank, hence themarket is dynamically complete.
Ous(t.Ty) =05+ ps,0(t,T,) ~ Ps;0,D, (1, T,,) 0t Ty) =0, 0t.T,) - Ps0sD . T,) and
o, tT,)=0,0,D. (T,). The volatility of the discount bond;(t,T,)=0.D,tT, .)
0t T) =[p. ot Ty) £,0T,) 0 ando, . T,) =[oustT,) 0t T,) -0, (tT,)] are the
diffusion vectors of the discount bond and the ffiesyprice respectively.

Since we are interested in futures contractsfuhees price changes are credited to or debited
from a margin account with interest at the contimlp compounded interest raté). The futures
contract is indeed assumed to be marked to madkginciously rather than on a daily basis, and then

to have always a zero current value. The currentevaf the margin accouri¥|(t), is then equal to:

M (t) :j'ex;%j'r(v)dv}HH (u,T,)dH(u,T,) (5)

8 There is no need to specify the expressioB(afly) andK(t, Ty), since it will not be used in the rest of the pape



Applying Ité’s lemma to the above equation yields:
dM(t) =r ()M (t)dt+8, (¢, T, )dH(,T,) (6)
where g, (t,T,, ) represents the number of the futures contractbdtdimet.
The unconstrained investor, endowed with an iniiealthW(0), has an investment horizdip
0<t<T, <T, <T,, and (s)he is endowed with CRRA preferences ceesumption and terminal

wealth:

t -y 1- y

whereU(.) is a Von Neumann-Morgenstern utility function shting the usual Inada conditiorf) =

0 and W(T, ) represent consumption at timieand the agent's terminal wealth respectivelyis a
subjective discount rate amdis the relative weight of the intermediate constiampand the terminal
wealth. Wheny =1, the “reference” utility in the finance literatui® obtained, that is, the logarithmic

utility function characterizing a Bernoulli investo
T

U(c,W(TI))=aje‘”(5"’Ln(c(s))ds+(1—a)e"7(T"t’Ln(VV(T,)). In this case, the investor behaves
t

myopically in such a way that his (her) optimal dem will not include any component associated
with a stochastic opportunity set.

To determine the optimal consumption and assekcation, each investor maximizes the
expected utility function of her (his) lifetime csumption and terminal wealth. The market described

above is dynamically complete far < min(TB,TH), since the number of sources of risk (Brownian

motions) is equal to that of the traded risky sii@s. Karatzas et al. (1987) and Cox and Huang9419
1991) used the martingale approach to study theuroption-portfolio problem in a continuous-time

setting. Their main idea is to transform this dyi@problem into the following static one:

T y »
max E aj e ﬁds+ @a- a)e—ﬂ(Tl -t) W(TI ) |F ®)
{ew(m)} f 1—y 1_y t

st WO EU CO) g+ W) |Ft}
G(t) G(s)  G(T)

t



where E[E]JFl]E E,[] denotes the expectation, und®rconditional on the informatiorf;,, available at
time t and G(t) = 'B( ) :exp{_"r(u)du+—_|.||/1(u)|| du+_|'/](u) dz(u)}, with G(0) = 1, represents the

numéraire or optimal growth portfolio such that tre@due of any admissible portfolio relative to this

numéraire is a martingale under(see Long, 1990; Merton, 1990; Bajeux-Besnainod Rortait,
1997). | | stands for the norm iR’ and &(t ) is the Radon-Nikodym derivative of the so-called,

unique, risk-neutral probability measue equivalent to the historical probabiliy, such that the
relative price (with respect to the savings accalntsen as numéraire), of any risky security 3-a

martingale (see Harrison and Pliska, 1981).

3. Optimal dynamic strategies

Having described the economic framework, we sheigne the optimal consumption and portfolio

strategy problem for our unconstrained investormtie financial market is dynamically complete.
Given the CRRA utility function and the numéraprertfolio G(t), the solution to the static

problem (8), which is a standard Lagrangian optatian problem, determines the investor’'s optimal

consumption and wealth at tirtie

w(t)

o(yt.T) ©

ct) =

12

W(t) =¢ "Gt oyt T,) (10)
where { is the Lagrangian associated with the static @nogr

lTl n ot 1 1 n : 1—1
Pyt T)=a" ey( )E (%J ds+ (l-a)’e 0 )E [ﬂJ ’ is the wealth-to-consumption
1 G(s) G(T)

ratio.
The resolution of the expectation f(y,t,T,) may be simplified by making an appropriate
change of probability measure. This change holdsfy diffusion process and for any price of risk.

We suggest the measuRY" | called the CRRAT,-forward probability measure or the CRRA-forward
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measure (see Appendix A). In a recent article, Dpte and Rindisbacher (2009) have substantially
generalized the work of Lioui and Poncet (2001) ®hohk and Sorensen (2004) by using the forward
probability measure (Jamshidian, 1989; Geman et1895) and a zero-coupon bonB(t,T,), as
numéraire, to derive optimal portfolio rules in @y general setting for non-Markovian processes and
for concave non-specified utility functions. To aiot optimal demands, Rodriguez (2002), Stoikov and
Zariphopoulou (2005), Bjork et al. (2008) and Butdset al. (2010) used a change of probability
measure related to a CRRA utility function, buttlis paper, we attempt to clarify this change of
measure. Although, Detemple and Rindisbacher’s gdani probability measure is different than the
CRRA one, our intermediate results are similarhimseé of these authors and can be considered as a
special case of their very general results.

Under P¥™ | ®(y,t,T,) can be rewritten in the following way

1T,

<D(y,t,T|)=a;je

—1(5— T
¥

gyt 9dst -y e LT (11)

where ¢(y,t,T) =BT, ) B,(t,T,) andB,(t,T,) is given by:

B,(Y(t).4T)=B, T )=EF" )[ex%— | ‘;—;21"/1 -0, T )||2duH =P ){exp{— | yy(u)duH (12)

Inspired by the relevant literature of the ternusture of interest rates (see Duffie and Kan,

1996; Dai and Singleton, 2000; Ahn et al., ZOQ?VXI,T,) is a quadratic function anB, (t,T, ray be

viewed as an exponential quadratic function ofsiate variables:

YT =AWLT)+AWLT)Y(D) +%Y(t)' AV LTYO) (13)

B, (t.T)= eXD{Bo(V,LTl )+B(rtT) YD)+ %Y(t)' B,(y.t.T, )Y(t)} (14)

with the terminal conditionB,(T,,T,)= limplying that B(y,T,.T,)=B,(y.T,.T,)=B,(.T,.T,)=0.
AMT), At.T,) andA(t,T,) are given in Appendix B.
B,(t,T,), which results from the agent's consumption-innestt problem solution, is

investor-specific, since it is a function of herisjhrisk aversion coefficient and horizon. As its



11

expression, given in equation (12), is formally imto that of a discount bond, it will be quadifi to

as the investor-specific discount borig).(t, T,) is stochastic because of the stochastic charattee
prices of risk. For a more risk-averse investontttae logarithmic utility agenty(> 1), yy(t,T,)>0,

and B, (t,T, ) is like a discounting factor. For example, whee ivestor's horizon increases, it tends
very quickly to zero. Conversely, when (s)he islesk-averse than the Bernoulli investgr<1),
yy(t,'l'I )< 0,andB,(t, T, ) is comparable to a compounding factor, in whiceciatends to infinity for

an increasing. yy(t,T,) may be considered as a state variable incorporétia risk generated by the
prices of risk and the yield curve. The investoggific bond reveals thanvestors have a demand
for bonds to satisfy their needs in terms of tiheirizon, their risk-preferences and their desire
to hedge stochastic prices of rigknder P™), the investor's optimization problem consists in
calculating two bonds. The first is a discount bg¢imdded or synthetic) with a maturity date equal t

the investor’'s horizon and is associated with ggerate risk (see Lioui and Poncet, 2001; Munk and
Sorensen, 2004 and Detemple and Rindisbacher, 20@8)e the second is an investor-specific
discount “bond” (synthetic) reflecting time-variati in the prices of risk. AlthouglB, (t,T, s not a
traded asset, it can be, however, manufacturea complete market, by existing securities. The sgco
“bond” reveals that investors have a demand fordbdn satisfy their needs in terms of their horjzon
their risk-preferences and their desire to hedgehststic prices of risk. The investor's consumption
wealth problem reduces to the computation of the bends, which, by referring to the yield curve

literature, is well-known and does not require eciir method.
At any datet, the wealth of the investor is composed&(ft , 6)(t) and ,(t) units of the

spot commaodity, the discount bonds and the riskdgsst respectively, and the margin account:
W(t) =6, (t)[S(t) + f S(u)d(u)duJ +6,(1)B(t, T,) + 8, (1) B(t) + M(t) (15)
0

Applying Itd’s lemma to the above expression andhgyself-financing property, the dynamics

of the unconstrained investor's wealth may be emitt
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dw(t) _ c(t)
Wi {r(t)m(t) oA(t) - ()}dHn(t) odz(t) (16)
with the initial conditon W(0) and n(t)'=[ﬂs(t) 75, (t) ﬂH(t)]- ﬂs(t)E%(tS)(t),

G OB T,) and 7z, (t,T,) Ew denote the proportions of the total wealth investe

=0 =W W)

in the commodity, the discount bond and the futwastract respectively. In the sequel of the paper,
we shall distinguish the speculative proportioms)’ (t , frbm the hedging proportionsz™®(t , )
related to the discount bon&(t,T,) and those,77™"(t ) related to the investor-specific bond,

By(t,TI ) In order to optimally determine these proportigche unconstrained investor solves the static

program (8). The result obtained is presentedearféiowing proposition.

Proposition 1.Given the economic framework described above, ptienal demand for risky assets by

the unconstrained investor is given by

n(t)Tl/z‘la/l(t)+(1‘T1/]Z'10{ai}e_z(st) ¢(yt8)) a,(y:t,s)ds+ (1~ a)iez(' VLT 5 ()

) Dy, T, d(y,t,T) %
17)
The optimal asset allocation may be decomposed in:
a) a traditional mean-variance component
75" (t) 1 1 Hs(0) = (1)
(1) =| Y (1) [==Z70A) =S 27 pp () - () (18)

4 4
v (t) My (1)
b) a hedging component related to the stochastitdhtions in the instantaneous return of a dis¢oun

bond with maturity date equal to the investor'sihon

77J34|R(t) 1T, " 1 N
= 0 ol 7 S o e )
72" (1) ‘ " 7
(19)

c) a hedging component related to the stochastictdhtions in the instantaneous return of the

investor-specific discount bond with maturity detgial to the investor’'s horizon
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n.ls-iMF’R(t) 1T 1 g
() =| ) =200 ar [ YLD g i sk a-aye T EVLT) 5 )
d(yt,T) d(yt,T)
77J'_-||MPR(t) t b R
(20)

where, g, (y.t,T,) =(1—%Jas(t,T.)+aBy(t,T.), 0, (T )=0,[B(t.T )+ Bt T)V(W)], Z=00

and %, =0,0,. B(y.t,T,) and B,(),1,T,) are solutions to the following ordinary differeati
equations (ODEs):

th (y’t1T| )_ Bz(y’t’Tl )ﬁYy _ﬁ\l(sz(y’t1T| )+ Bz(y’t’Tl )ZYBZ(y’t1TI )_ Az(y’t1T| ) =0
B, (vt T) -2, B (vt T )+ 7,0 B,(vt. )+ B, (vt T, )2, B (vt T, ) - Alyit.T ) =0

with the terminal conditiorB,(y,T,,T,)=B,(y,T,,T,)=0. B,(y.t.T,)andB, ().t T,) are the first order
derivatives with respect to t. The constant ancemeinistic functionsz,, and g (t) are given in

Appendix B.
Proof. See Appendix B.

Similar results can be found in other papers wh&e. main important difference is that these
results are expressed in terms of the two discbonds. As shown in Proposition 1, the optimal
demand for risky assets (equation 17) can be dessecpinto two parts. The first one is the tradgion
mean-variance speculative portfolio proportionah® investor’s risk tolerance (Proposition 2 belew
dedicated to this term), whereas the second parthisdge portfolio (see Proposition 3 below). This
portfolio, which corresponds to the second componéthe right hand side of equation 17, servea as

hedge against the stochastic behavior of the itestaous returns ob(y,t,T, andO(t, T, ). Under the

CRRA-forward measure, the investor does not hedgéat changes in each and every state variable
composing the investment opportunity set, but raf®#he hedges against unfavorable shifts in

®(y,t,T,) and O(t,T, ), which encompass all the uncertainty in the inwesit opportunity set.
d(y,t,T) and O(t,T, ) depend on the two bond&(t,T,) and B,(t,T, ). These two bonds

represent, under the CRRA-forward measure, the $worces of risk in the economy. As a
consequence, the hedging demand can be split incomgponents. The first one reveals how the

investor should optimally hedge against randomtélations in the instantaneous return of the distoun
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bond B(t,T,). The second ingredient hedges against the rislergeed by the investor-specific
discount bond and arises because the prices ofreslstochastic. Notice that if market prices ekri
were assumed to be constant or deterministic, ahgnthe discount bond(t,T,) risk would be likely

to be hedged by the investor. Although this terringilar in essence to that of other articles, siitc
captures the risk associated with the prices &f iiss expressed in a different manner in ourgran
Detemple and Rindisbacher (2009) model, which igemgeneral than ours, this component was
couched in terms of the density of the forward measwhile our formula (20) highlights the role

played by the investor-specific borig},(t,T,). In Lioui and Poncet (2001) paper this addend depe

on an unknown volatility function of the forward asare density, which was left unspecified. In

contrast, we explicitly specify the voIatiIit;rBy (t,T,). These differences come from the change of the

probability measure operated: on the one handptiweard measure in the case of these papers, and, o
the other hand, the CRRA-forward measure in oue.cas

The next propositions are devoted to a thoroughysbf the speculative and hedging terms.
They try to elucidate the consequences on thesgstef the stochastic opportunity set, especiaky th
stochastic convenience yield, to highlight the nleyed by the traded primitive assets and therdéstu
contract as hedging instruments, and, for practicakiderations, to implement these terms. Moreover
Proposition 1 does not allow an investor to complageoptimal proportions for each risky assethis t
respect, we extend the previous literature (see Aldler and Detemple, 1988a, b) by deriving
individual weighs for each asset.

To achieve these goals, two assets may be intrddirde our analysis whose prices are
denotedB, (t,T;) and H,(t,T, ). These assets are assumed to be cash assetheyere not marked
to market, and can be duplicated by a portfolidoofr assets, namely the riskless asset, the discoun
bond with maturityTg, the spot commodity and the futures contractsyTh#lect orthogonal risks. The
first asset is associated with the orthogonal ofkhe interest rate, while the second one is linte

that of the convenience yield. Note that the exgs8pot commodity spans the riskaf(t . )

dB, (t.Ts) _ _ -
B (LT r(t)dt- o, (t, T,) dz(t)
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dH, (t,T,)
Hv(t'TH)

=r(t)dt+a,,(t,T,) dzt)
with initial conditions B,(0,T,) andH,(0,T,,) and where o,,(t.T,) =[0 p,0tT,) 0] and
7,0 =0 0 -ag,tT)]

Equation (18) may further be manipulated to obtagre insightful expressions by introducing

the two synthetic assets into our analysis. Ttaddeo the following proposition.

Proposition 2. The optimal mean-variance proportions can be codche recursive way:

vy - L, T ) (1)
0= T 1)
) = 1[ o) =1®) T OTTe) v (t)} 22)
y JBu(t’TB) JBu(t’TB) UBu(t1TB) UBu(t1TB)
vy =t {us(o 1) _ ZoltTe) v gy _ ZusiT) o (t)} (23)
y JS US US

Proof. See Appendix C.

This formulation is useful for computational purpssince speculative demands are expressed
in terms of excess returns, volatilities and caMaces, and they are calculated in a recursive thay:
speculative demand of futures contracts is firsivéd, which allows one then to determine thathef t
discount bond and finally the proportion of the tspommodity can be obtained as a function of the
other two demands.

The investor's speculative demand consists of ral fincluding an element specific to the
futures contract and a component proper to thepsmitive risky assets. This decomposition sheds
light on the role played by the orthogonal riskptosed by the two replicable assets and the spot
commodity. The speculative demand for the futurestract depends on the excess return and the
variance of the synthetic asséi, (t,T,, . I) reflects the investor's anticipations about tirthogonal
source of uncertainty of the convenience vyield. Tiitares contract is thus the sole asset that hill
used by the investor to directly form her (his) esgations about the future evolution of the

convenience Yyield. It follows that the mean-varemportfolio for futures contracts will be the only
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demand depending uniquely on the price risk ofcthrevenience yield. The speculative demand for the
discount bond is a function of the excess retuththa variance of the synthetic assi(t,T,), which
spans the orthogonal risk of the interest rate aBse of the correlation of the futures contrachlite
short raterzy” (t) is, however, modified by a second term. This aolditl term involves the mean-

variance portfolio for futures contracts weighted/ lihe usual covariance/variance ratio

zHBu (t’TH ’TB)
UBu (t’TB)IUBu (t’TB)

. A similar argument applies to the speculative dednfor commodities. The

excess return of the spot commodity divided byvisiance, spanning the orthogonal risk of the
commodity, is now adjusted by two terms since tiwt sommodity is correlated with both the futures
contract and the discount bond.

The interaction between the three components ofirthestor’'s speculative demand can be
examined through the covariances between the as¥ethe one hand, since,(t, T, i9 supposed to
take low real values, it has a weak impact ontiestor’'s speculative position on the spot comnyodit
As expected, unlikerz,(t) , the proportion invested in the discount bondtrergly influenced by
ZHBh (t,T,,T;), and therefore by the speculative demand of theda contracts. On the other hand, as
the spot commodity and the futures contract arbligositively correlated, the speculative propmrti
of the commodity will be largely driven by that tife futures contract. Thus the parameters of the

convenience yield and its price of risk are of pawant importance in determining the positions &f th

spot commaodity and the discount bond.

Proposition 3. a) The optimal hedging proportions spawned by chamyéise discount bond(t,T,)
(interest rate risk) write:

7 () =7 (1) =0

riy < (1L b fo ™ BLS) oft,s) e T BT oftT)
o= yj{a I apamyatn) ® P egm)ofen) 0

t

b) The optimal hedging proportions generated byitivestor-specific bond (market prices of risk) may

be expressed in a recursive way for each riskytasse
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1T, 1

ety =—— L | grfer 2UALS) e gyt T) ,
" (t) = gHv(t,TH){a J.e @(y,t,TI)UBVV(t'S)dSJr(l a)’e qJ(y,t,'I',)UBVV(t'T')} (25

t

A= {ai}j&” A N R R AN 12 ”)asyu(t,Tl)}

POt T)| 1 d(y,t,T,) O(ytT) o)
5O ey
O, (t,T, ) Ogy (t1T| )
a0 = ai {ai} e % 0, o(t,s)ds+ (- a)% Nk i((y tt-_'l-_'_)) ys(t.T, )}
S t y! 1 1 y, 1 (25”,)

Zeall) e gy - Zesll) en

S JS
c) The optimal hedging proportions generated byitivestor-specific bond (market prices of risk) may
be decomposed in the following manner for eachearedy state variable:
MPR() = 72MPRX () + 7 MPR (t) + PR (1) (26)

1T

77MPR. '(t) 5o |:ay'|'eyst [l Blt S +| B t S)Y(t)]qf((}}//’:,-?)) ds

1 @7)
_a)Ve - gy tT)
ra-a)re’ [BT)+1B,LT) Y(t)]q)(y,t’_rl)}
vy (o) 20t AR (AN ,
MR (1) = 5 aa{a J'e W (t, s)q)( = ,T)ds+(1 a)’e w“(t'T')CD(y,t,Tl)} (27)

wherei D{X(t),r(t),J(t)}, | is a 3-dimensional identity matrix andll= 1, 2, 3, represent its columns.

B,V
B, (t,

=)

TI
T)

~—

T)=losstT) 0.,0T) o, T, ¥, 1T)= andB, (t,T,) stands for the first

—*

order derivative ofo(t,TI ) with respect to each state variable.

Proof. See Appendix D.

Proposition 3 above has the traditional Merton-Bezeflavor as it disentangles the hedging
proportions for each and every state variable.dddéhe change of measure described above allows us
providing a decomposition of the hedging elementdmms of two discount bonds instead of an
arbitrary finite number of Merton-Breeden terms &dgw that of the state variables. These two bonds

embed the risk associated with the short rate aedptrices of risk respectively, the latter being
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functions of the state variables. However, in otddanvestigate both the role of the risky assats the
impact of the state variables on the optimal heglgiortfolio, that of the convenience yield espdgijal
we further decompose the hedging components fdn gadable. In sharp contrast to the classical
Merton-Breeden elements, our optimal hedging prioges inherit the advantages of Proposition 1, in
that they depend on the features of the two bohdgseamentioned.

According to Proposition 3, the hedging demandterdiscount bond (equation 24) is the only

one including a term that hedges the risk due & dtochastic nature of the interest rate through
B(t,T,) . This component is proportional to the ratio of tolatilities of the bonds with maturities
respectively equal td, andTz. When the two maturities coincide, this ratio ¢gial to one, and the

hedging demand is merely a function of the two IsoBdt,T,) and B, (t,T,). This is also the sole

ingredient in the agent’s optimal demand evolvirggedministically over time. This feature is quite
general, in the sense that it is not related toGhessian character of the short rate. Insofahas t
variance of the interest rate is proportional solétvel this characteristic remains valid. This lgooe
the case, for instance, if the short-rate followestjuare-root process.

Parts b) and c) indicate that the hedging term stehs from the stochastic character of the
investor-specific bond may admit two different degmsitions pursuing two different objectives. The
first, in the spirit of the speculative compone(@oposition 2), expresses the hedging terms in a
recursive way for each risky security. Furthermdine, covariances between the state variables and th

assets which, in conjunction with the partial datives of By(t,TI ) determine the sign of the hedging

demands, appear in a simple way facilitating treeafghe above expressions.
The futures contract serves to hedge the orthogastalof the convenience vyield, while the
discount bond and the spot commodity are emplogdtketige those of the short rate and the log of the

spot commodity respectively. Correlations betwees assets imply thatr,"™ (t and 7z2"R(t )are

appropriately adjusted to take into account forséheorrelations. Once again, similarly to the
speculative elements, the parameters of the coeweaiyield have a heavy impact on the hedging
terms of the spot commodity and the bond. The pitapw obtained in Proposition 2 differ markedly

from those of Breeden (1984), who, in his studynsiders futures contracts with an instantaneous
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maturity perfectly correlated with the state valégb This particular definition of futures contmct
implies that the demand for the primitive asset therve to hedge state variables disappears. In
contrast, our investor elaborates her (his) styatggincluding the primitive assets in order to fed
against the risk of the state variables.

The second decomposition, given in expression @§)arates the hedging addend into three

components; one for each and every state varifitblgarticular, introducing a stochastic convenience
yield into the economy results in the presence logédging demandz™*-°(t) , specific to this yield,

that cannot be neglected. This equation makesssiple to disentangle the hedging element related t
each state variable from those associated witlotier variables. As a consequence, our model leas th
ability to exactly measure the impact of these glgerms on the investor's optimal demand. It
allows one to assess the weight of each stateblaria the hedging terms stemming from the investor
discount bond and therefore to assess the relevamaeell as the importance of the state variables
included in the investment opportunity set when iteestor’'s objective is to implement hedging
strategies. Actually, given the nature of the ulyiley commaodity, some factors may have a strong or
negligible effect on these hedging elements imgjyiinat these factors may have or have not to be
included in the opportunity set. Thus, this lastymearied according to the nature of the spot
commodity to be hedged. Since the hedging compenarg affine functions, the investor has, in
addition, the possibility to separate the impacthef state variables on these components and ter bet
understand the overall behavior of his (her) optidesnand.

In the light of expression (27’), this decompositiappears in a natural way and admits an
economic interpretation. The investor seeks anramae against the random shifts in the price of the

investor-specific bond. As discussed abo®(t,T,) incorporates the prices of risk through(t),
which involves the state variables. The hedging ateta 77"~ (t ) depend on the ratio¥, (tT1,).
Since By(t,Tl) is analogous to a discount bond, these ratiogrdéte its sensitivity on the three state
variables (see also Wachter, 2002). In other woedsh W% (t,T,) assesses the sensitivity of the

hedging demands to changesBy(t,Tl) resulting from a change in the state variables.
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4. An illustrative example
To get more insights on the impact of the pararsatarthe model, various simulations are represented
in figures 1 to 12. We simulate the reaction of #peculative and the hedging demands to the
investor’'s horizon as well as to the state vargl@eolution. Table 1 summarizes the values of the
parameters used in our simulations.

[INSERT TABLE 1 ABOUT HERE]

The parameter values are partly inspired from Setais (1997) and Casassus and Collin-
Dufresne’s (2005) papers. They are chosen in otdeaccount for some features characterizing
commodities. Commodity futures prices are frequendklow the current spot price exhibiting
backwardation (see Litzenberger and Rabinowitz5},98hich is equivalent to a positive risk premium
and implies a positive convenience yield. Commodpgt prices and convenience yields follow mean-
reverting processes (e.g. Bessembinder et al.,)1895wvell as the short rate, so tlaat 0andk >0.

The constant components of the prices of risk argppesed to be positive, while

Ay <0,4,5; <0,andA, <0 inducing also mean-reversion in prices of risk atrdngthening that of the

state variables (see Cassasus and Collin-Dufr@8@8). The convenience yield and the spot price are
related through inventory decisions (e.g. Routleglgal., 2000). During periods of low inventorids
probability that shortages will occur is greatendaence the spot price as well as the convenience
yield should be high. Conversely, when inventodaes abundant, the spot price and the convenience
yield tend to be low. It follows that a positiveroglation between the convenience yield and theé spo
price may be predicted. Frankel and Hardouveli8§)%nd Frankel (1986) argued that high real
interest rates reduce commodity prices, and viecsaveThis should imply a negative correlation
between, on the one hand, interest rates and eootiier hand, spot prices and convenience yields.

To analyze the impact of risk aversion, optimal dads are depicted for four degrees of
relative risk aversion (RRA). The first one corresgs to the logarithmic functiony =1, in which
case, the hedging terms vanish. The Bernoulli toresppears as the dividing line between hedging

positions taken by investors who are more or lédsaverse. The second risk aversion parameter

caracterizes an investor who is less risk-averaa the Bernoulli one. As pointed out by Kim and
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Omberg (1996), the indirect utility function maypdade for too low values whep<1. To avoid such

a problem, we put 0.7. For a more risk-averse itovaban the log-utility investor, we retain a valof

y =3 for our simulations. Finally, according to MehradaPrescott (1985) risk aversion should be
much higher than one. To take into account thisifeawe choos¢ = 6.

When studying the optimal proportions as a functdrthe investment horizon, we let this

horizon vary in the intervalr, D[O, 2], and we set the maturity of the futures contrackt the bond such
asT, =T + 1/12andT, =T, + 5Srespectively. That is the futures contract anddiseount bond expire

one month and five years respectively after thedadritle investor’s horizon.

[INSERT FIGURES 1, 2, 3, 4 ABOUT HERE]
Figures 1 trough 4 picture the impact of the changfethe state variables on the speculative

demand and of theparameter. We set the investor’s horiZr= , while the other parameters values

remain unchanged. As expected, the mean varianmopaents are inversely relatedytand tend to
zero agy goes to infinity. Our numerical simulations shdvattthe interest rate has a weak impact on
the investor’'s demand, except for the proportiopscgic to this variable. We shall then omit the
figures related to the short rate and shall mafolgus our analysis on the influence of the spot
commodity price and the convenience yield, firgt, tbe speculative demands, and, second, on the
hedging terms.

To examine the role of the spot commaodity, its @rianges from 80 dollars to 120 dollars. For
low values of the spot price, the speculative comemd of the futures contract is positive and
decreasing, while for high values it is negatived atecreasing (see Figure 1). This result may
essentially be explained by the price of risk asged with the orthogonal risk of the convenience

yield, which is a function of those of the spot eoadity and the convenience yield. The sign of
™ (t) depends on that of (t) since the volatilitya,, (t,T,, )is multiplied by minus - the convenience

yield and the future price are negatively corraat§o understand this, formally, we have

A, (1) :i{w/}x(t) —%Ar ® +/](,(t)] On the one hand, it depends negatively on the

Vo ur ur
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price of risk related to the (log)spot pri(;eSrpu5 = PPy < 0) and positively to that of the convenience
yield (pw, >O). On the other hand, mean-reversion in the pricasif of the (log)spot price implies
that as the latter raises the former declinesvbrall, for low values of the (log)spot price, jtece of
risk outweighs that of the convenience yield sd LMI)<O, while for high values of the spot price

the inverse holds. An inspection of Figure 1 shtlwa there exists a critical value of the spot ric
separating positive from negative speculative detwafor futures contracts. In other words, the
interaction between the prices of risk in conjumetivith their mean-reverting behavior determines

whether the speculator goes short or long.

Unlike 72V (t), 7V(t) is positive and monotonic increasing in the spitep(see Figure 2).
When this last is low, a high, due to mean-reversiostantaneous expected return of the spot
commodity is negatively adjusted by both the spmoré position in the futures contract

(Z,5(t,T,)>0) and in the bondZ(t,T,) <0). This results in a low speculative demand of thet s

commodity and vice versa.

To underscore the importance of the conveniendd yie let it vary between —-5% and +15%.
The speculative demand of the futures contractstalegative values and is an increasing function of
the convenience yield (see Figure 3). Followingshme reasoning as for the spot price, noticethieat
effect of the price of risk associated with the mmence yield dominates that of the spot commodity
and the speculative demand is negative. Howevethe@gonvenience yield approaches to zero and
becomes positive the difference between the twaepriof risk lessens and tends to zero. For
sufficiently high values of a positive conveniengeld the speculative demand may be positive. The
speculative proportion of the spot commodity isitiees and decreasing in the convenience yield (see
Figure 4). Indeed, the joint effect of mean-revansin the expected return of the spot commodity and
the behavior of the speculative demand of the &staontract lead to this result.

[INSERT FIGURES 5, 6, 7, 8, ABOUT HERE]

The reaction of the hedging addends to the chaoigthe state variables for different values of

the y parameter and of the optimal demands to the inveshorizon exhibit some features similar to
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those reported, though in a different context, agnothers, by Kim and Omberg (1996), Campbell and
Viceira (1999), Wachter (2002) and Sangvinatsos\&adhter (2005). These reactions are displayed in
Figures 5 to 12. First, hedging positions as a tfancof the state variables may be short or long
depending on the degree of risk-aversion. Wien an investor facing unfavorable states of the avorl
wishes to hedge against this adverse evolutiohefrivestment opportunity set. By contrast, when

1, an investor prefers to benefit from favorabletegaof the world and, hence, from a “good”
investment opportunity set. An increase in the etgub return is an improvement in the investment
opportunity set, while a decrease in the expeotddrm represents a worsening. As can be seen in
Figure 5, for low prices of the spot commoditg]"**(t) is positive (negative) for a less risk-averse
(more risk-averse) agent than the Bernoulli onewéier, as the spot price goes up, the sign of the
investor’s position reverses. A more risk-averseegtor ¢ > 1) desires to hedge the risk induced by

time variation in the price of risk,(t), as a function oiX(t). As far as A, (t) remains sufficiently
negative (the return of (t,T,) is positive), this investor has a positive hedgiregnand, 77" (t)
while a more risk-tolerant€1) agent has a negative one and vice versa. F@gpresents the impact

of the convenience yield om,"™(t) . The explanation is analogous to that of the irhpéc¢he spot
commodity price. When the convenience yield is tigga /]V(t)>0 but the expected return of

H,(t,T,) is negative. It follows thatz"™(t) < @nd 77;""%(t) > Ofor y>1 andy<1.

Second, in a particular region of the state vdembhowever, the hedging proportions behave
in a different manner. The authors above mentiopexided an explanation in terms of mean-
reversion in the state variables. A nonmyopic itweis aware not only about the current value ef th
prices of risk but also about their future values prices of risk are affine functions of the mean-
reverting state variables, when they are negatiey;, are expected to pass through zero and to &tai

positive value. An investor anticipating the futweeolution of the price of risk, (s)he consequently
modifies her (his) hedging demand. For examplepf@ig shows the evolution of!"™(t) as a
function of X(t). For some values of the spot commodity price, Whg(n) is negative but close to zero,

the hedging demand is negative (positive) for aenmisk-averse (risk-tolerant) investor. The mean-
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reversion effect is less pronounced for the coremge yield and it can take place for very high
positive values oB(t) , in which case the sign of the hedging proportimasy be reversed (see Figure
6). Third, the hedging terms lie, for= 6, between those fgr = 0 andy = 3 meaning thafor more

risk-averse agents than the logarithmic, beyonerdam level of the risk-aversion coefficient, the
hedging demand decreases. This feature may beimaglas follows. For high degrees of risk
aversion, investors privilege less risky assets land their investment in risky assets whatevee th
level of the sate variables. Fourth, the hedgingmanents stemming from the prices of risk assagiate

with the futures contract and the spot commodityparticular, are not monotonic i) (Figures 11

and 12): they are humped or inverted humped fdroeat $orizon. This pattern may be explained by the
mean-reverting character of the prices of risk wit@y attain values close to zero, in particular.

[INSERT FIGURES 9, 10, 11, 12 ABOUT HERE]

In addition, a clear distinction can be drawn betwée mean-variance elements related to the
interest rate (Figure no reproduced here) fromatassociated with the spot commodity and the fature
contract (Figures 9 and 10). The latter are noedinand sharply increase or decrease for a short
horizon but they rapidly reach an asymptote farayer term. This is due to the pattern of the sstitth

assets price volatilityo,, (t,T,,): it flattens for a long horizon but is highly néinear when the

horizon shrinks. In contrast, the terms relativetie short rate are almost linear. Indeed, as the
correlation between the interest rate and bothctmenience yield and the commaodity is low, these
terms are essentially driven by the volatility loé tbond. The latter slowly varies with the horizand,

as a consequence, the demand for the bond.

4. Concluding remarks

In this paper, optimal hedging decisions involvemmmodity futures contracts have been studied in a
continuous-time environment (i) for an unconstrdiimevestor with a CRRA utility function, (ii) when
spot prices, interest rates and, especially, theemience yield evolve randomly over time, and ke

market price of risk associated with the spot comlityds stochastic and an affine function of thatet
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variables. In this setting, by using a suitable @R#pecific change of a martingale measure, we deriv
the investor’'s optimal demand, which consists gpaculative component and two so called hedging
terms. The first hedging component is associated interest rates uncertainty. This term involves a
discount bond with a maturity equal to the inveéstanvestment horizon. The second one deserves
greater attention because it has some interestiogepties distinguishing our results from those of
other papers. It involves an investor-specific baridch can be used to hedge against fluctuations in
the stochastic market price of risk. This comporngebmposed of three hedging terms associated with
the three state variables. They underline theplalged by the primitive assets and the futuresreots
as hedging instruments against the orthogonal ofsthe state variables, the convenience yield in
particular. Both the speculative component andhiidging terms can be couched in a recursive way
improving the tractability of the model. The mamglication of these properties is that the investor
measure the effect of each state variable on hej ¢ptimal demand and decide which of those
variables are effectively important when s(he) passa hedging objective. This can be done, however,
by exploiting the characteristics of the two borids, the term structure of interest rates andptiee
of risk, instead of those of each and every stat@ble.

The economic framework of this paper can be extmiseveral directions. First, the general
setting may usefully be adapted to the investoliscation problem in the case of stocks paying a
dividend. Second, commodities markets are highlatie and spot assets exhibit jumps (see, for
instance, Hilliard and Reis, 1998; Yan, 2002). €ffect of jumps on the optimal asset allocatiorhwit
commodities remains an open question. Third, amothieserved characteristic distinguishing
commodities from financial assets is that commogiiges exhibit seasonal patterns (see Richter and
Sorensen, 2006). It would be of great interest Xxaméne how seasonality modifies the investor's
hedging behavior. Finally, it is now acknowledgadhe relevant literature that the conveniencedyiel
is not observable: indeed, in a partially obseradtonomy (see, for instance, Dothan and Feldman
1986; Detemple 1986; Gennotte 1986; Xia 2001) antigan estimate one or more unobserved state
variable(s) given information conveyed by past oksgons spawned by observable state variables via
the continuous-time Kalman-Bucy filter. One impottaxtension would therefore be to study how the

incomplete information affects optimal asset altaa
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Appendix A. Change of martingale measure.
In this Appendix, we determine the martingale meago calculate the optimal consumption and

wealth for any diffusion processes followed by $tete variables and the prices of risk.

From expressions (9) and (10), it can be seenttieatomputation of(t)’ anoW(t)* involves

1_;
that of[g(t) j ’ . To make this calculation easier, this term maydveritten:
|
1_1

0 1 B(T'(fT)') y HRO,LT) )
G(t v = G = R(T,,T, v
— =B({,T) /| —2— =B(t,T) /| =2
[G(Tl)J t1) B(t,T,) ©1) [R(t,Tl)J

G(t)

whereB(t,T,) =B(0,T,) exp{j'[r(u) +AU) o, (u,T,) —%0’5 u,T) o, u,T, )}du + j'aB u,T, )'dz(u)}

is the price of a discount bond of maturityand R(t,T,) = B(t,TI )/G(t) is the relative price of this

discount bond with respect to the numér&(e.

The optimal wealth may be rewritten in the follogriconvenient way:

Wit) =¢ "Gy j B(t, )"V E, (%J " ds+B(LT )V E (%J ' (A.1)

t

Note that R(t,T, ) is a martingale under the probability measBrewhich leads to an immediate

1
1_;
calculation of O(t,T, ) In contrast,R(t,T,) ¥, for y <, is not a martingale undé. To see this,

1
applying Ito’s lemma td?(t,'l',)1 Y gives:

RET, )1'% =B(O,T )1'3 exp{—’;_;zlj"uu) ~o,(uT )||2du}
° (A.2)

ex%—%j{["ﬂl(u) ~0,(u,T)| du —1_7}/;[ MW -o,uT )]Idz(u)}

!
Y

1
1_7
with initial condition R(O,T,) ¥ =B(O,T,) 7.
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Following Geman et al. (1995), the Radon-Nikodynriwdgive, defining the probability
measureP"" equivalent tdP, is given by:

d p(y,Tl )

SUT)==15

- exp{—%inm .0 du- L2l -o,7)] 'dz(u)}

We suggest the following numeéraimg(t,T,) =<, (t, T, )G(t), associated withP»™) | such that
any financial asset divided bM(t,T,) is a martingale under this new measure. The dycswof this

numéraire are governed by:

ANCTD |y + A(t){ A(t)+( 1}%&1)} dt{iA(t){l—ljaB(t,Tl)}dz(t) (A-3)
N(t,T,) y y y

with the initial conditionN (O, T,) =1.

From equation (A.2), it follows that:

R(T,,T o _ 1T ]
E (_Rf(tl,T, ))] = E{exp{—};—yz}f||/l(u)—as(u,T, )| du}

p{ L / i I' b -y au-Y hw-oy (T >1'dz<u>H

We can use Bayes' rule to get:

R(T. T) yer 2
(R(IT) ] { P{ J.Zyz ) - o, duH

- E‘(P”' ){ex _ijy(u)duH =B,(Y(1),t,T)=B,(t.T)

E,

The same procedure may be used to compute:

R T o Sy—1 , T,
| E{( e J ] o= el ){exp{_ 2w -o,us) dqus: fo.0.90s
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PT) is the CRRAT,-forward probability measure or the CRRA-forwardasme.fy(t,Tl) is the

density of the CRRA-forward measure with resped?.tél_—y[/l (t)—o, (T, )] represents the price of
4

risk expressed under the new probability measure.

Appendix B. Proof of Proposition 1.

By using expression (4) and by operating the appat# calculationsy,(t) can be expressed as a

quadratic function of the state variables.
A Py T - _y=in T -
1) =220 -0, 0T 0 - 00 Tl =751 - 00 € T) + AY O - 05 €.T) + 4 Y 0)

=L o T 2o (TIAY O YO A AY )

=AWLT)+AWLTIY() +%Y(t)'A2(V,LT| Y(®)

where
Axo
1
Ay = —I'Z—:r'/lxo +I0—ur/lrO and
pSrpué'_lOSJIOurA — IOUJ A +i/]
purpvd' X purpvé' " pvé' %
/]xx 0 /]XJ
/]Y = _%/‘xx pi/]” _%Aw
PsiPuis ~ PssPur /]xx _ P /]rr PsiPuis ~ PssPur /]xa +i/]&5
purpvé purpvd purpvd pvé

The dynamics of the state variables under the foibitya PUT) are given by:

dv(t) = [z, () - &, YO ldt + 0,027 1)

Mgt o?
Os/x o Eas _JsAxx -1 1_0-3Ax5
with the initial conditionY(0) = Y. z(t) = (1) , H, = 0 a-oA, 0 :
ko 0 0 k

O 0 0
_ _ 1) . _ _ 1) .
O, =| PO, pP,0, 0 ) :uvy(t) = ,u(t) - (1_T/JUY [/‘o —0g (t’TI )]1 My, = K + (1_T/J0—Y/]Y , and,
PssOs PusFs PusTs
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by Girsanov's theorem,dz(”')(t)=dz(t)+[1—1J[/1(t)—as(t,TI )ldt is a Brownian motion under
4

P(VVTI) . Moreover’ Iet EX :[O-S 0 0]’ ﬁr :[psrar IourUr O] and 5{)’ = [pSJO-rF puJUJ pv505]
denote the 3-dimensional diffusion vectors of ttadesvariables.

Following the relevant IiteratureBy(t,Tl) is an exponential quadratic function of the state

variables given in equation (148, (y.t,T, ), B,(y.t. T, )andB,(y,t,T,) satisfy three ODEs, subject to the
terminal conditions, which are now well-known.

By using Itd lemmaB, (t, T, Jand ¢(y,t,T, ) follow respectively the SDEs:

dB,(t.T,) _

‘qArT)
B AT, T) ¢

do(yt,T,) _ o
;((}i/,—t,'l'l))_#"’(t'-r')d”%(y,tfﬂ)dz( (t)

whereg, (t,)= o, >

14

—

)
T)

=0 [BlntT)+B(ntT)V®] and o (yt,T) :(1—§jag(t:.)+agy tT)-

—

Note that, (t,T, and 4, (t,T, )are irrelevant for our allocation problem and widit be specified. By

using Leibniz type rule for stochastic integralsg®Munk and Sorensen, 2009(y,t, T, andO(t,T, )

obey the following equations:

1T,

1T
do(.LTL) =ﬂ¢(y,t,T|)dt+{ayfe LU Gyt syds
t

o e (B.2)
+a-a)ye’ " Z1‘;((};//’,—tt,,TTI.))J sV T, )} d2"(t)

By using Itd’'s lemma, the instantaneous returthefoptimal wealth (15) may be written:

:MN,mdt{&ai}e%M%(y,t,s)ds

y t d(yt,T))

dw(t)
w(t)

(B.3)

1

e Byt T) s
+(1-a)’e q)(y’t’_l_l)%(y,t,Tl)} dZ

Identifying the diffusion terms of the admissiblealth (16) and the optimum wealth (B.3)

yields:
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AW, ST gnts) T BT,
orn=0|=~+a _!.e q)(y’t’_l_l)a¢(y,t,s)ds+(1 a)’e q)(y’t’_rl)%(y,t,Tl) (B.4)

which leads to equation (17).

Parts a), b) and c) of Proposition 1 can direlstlyobtained from this equation.

Appendix C. Proof of Proposition 2.

The following matrix products give:

—_ pSr _purJHS(t'TH)_pSraHu(t'TH)

1
O-S pura-s purJSUHv (t1TH )
0 1 — O-Hu (t’TH )

pura(t'TB) pura(t'TB)aHv(t'TH)

aHv (t'TH )

(C.1)

A _AOPs AWM PuTus(t.Th) =~ P50, (G T4)
Os PuOs Os Pu0y, (. Ty)
AW AWM., ET)
Po(tTs)  p,0Ts)0y, (L Ty)
A )
g, (T,)

SOA(t) =

By using equation (18) and by rearranging termsphtain:

Ao, T _ 4, ET) -1 () (C.2)
GT) | LT |

(1) =

pura-(t'TB)/‘u (t) _ pura(t'TB)JHu (t1TH ) Av(t)aHv (t'TH ) (CB)

ﬂB(t)z 2 ' 2 ' 2
Pt T)ot.T)  p,otT)otT,) o tT,)

Ao0) _Ps00CT)

S S S

00,s(t.T,)
2

7(t) = 75, (1) (C.4)

By replacing the first two moments and the appuadpricovariances of the synthetic assets into (C.3)

and (C.4), equations (21), (22) and (23), in thénrtext, are obtained.

Appendix D. Proof of Proposition 3.
a) Expression (24) can easily be derived by opggdtie computation of ‘oo, (t,T,) .

b) o, (t,T,) may be written in the following manner:
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7, (LT )=|o0s(tT) 00,(T) ou, (T

Equation (20) may thus be expressed as:

— 1T,

, -%(s—t)M _ Tl/ —%(Tl—t)M
a Ie m(y,t,T,)UByS(t’S)dS+(l a)’e qa(y,t,T,)aByS(t’T')

t

2 sy R ¢
TPR(t) = 20 ayje Y )Masu(t,s)dsﬂl—a)ye 2 )MaBu(t,Tl)
o(yt.T) o(yt.T)

a’ e_%(s_l) Magv(t1s)d8+ 1- a)Tl/e_%(T' 0P LT) BV( T, )
O(y,t,T) e(y,t,T)

t

Using (C.1) leads to equations (25).

c) Letl be a 3-dimensional identity matrix amd1,,1, be its columns. Then, we have

O-BV (t’Tl ): J:([Bl(y’t’Tl )+ BZ(y’t’Tl )Y(t)] = EX |.IJI.Bl(y’t'TI )+ IJ‘.BZ(y’t'Tl )Y(t)J+ (D 1)
A (FEAPAR AR M-A VAR 3 0 EA =R R HEA AR 5 70) B

Plugging the above expression into equation (20@) r@arranging terms leads to equations (26) and
(27).

The first order derivative ofo(t,Tl) with respect to the state variables can be written
B, (t,T,)=B,(t.T),B.(.t.T,)+ 1,B,(t, T, )Y (®)], i O{X(t),r(t),3(t)} and! = 1, 2, 3 Replacing these

derivatives into (D.1) gives:

oy (LT) = Bt T )+ B, (nt T Y] =7, I|33yx tt :

Expressions (D.2) and (24) allow one to establigliiaéon (27°).
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Table 1

Numerical values of the parameters used in the mode

r J X a K J (8 o, as (0,1
004 007 46 025 15 005 035 001 025 004

AXO /1r0 /160 AXX AXJ Arr Ad’a’ IOSr IOSJ prb'

3.9 0.04 0.5 -0.8 -1.5 -0.15 -1.7 -0.15 0.7 -0.1
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for y=0.7 (solid line),y = 1(dashed-dotted line),
y=3(dotted line), y= Qdashed line). The other
parameters are given in Table 1.
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Fig. 11. Investor-specific bond rjpes of risk) hedging
futures proportion varying with the investor’s hawh. This
figure plotsnﬂ (t Jas a function of the investor horizon
ranging from O to 2 years fgr= (Q@olid
line), y=1(dashed-dotted line)y = (@lotted line), y= 6
(dashed line). The other parameters are given lieTh
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Fig. 8. Investor specific bond rfpes of risk) hedging
commodity proportion va%ing with the convenience
yield. This figure plotsZi™PR(t ) as a function of the
convenience vyield ranging from -5% to 15%
for y=0.7 (solid line),y = 1(dashed-dotted line),
y=3(dotted line), y= Qdashed line). The other
parameters are given in Table 1.
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Fig. 10 Speculative commodity proportion varying with
the investor's horizon.This figure plotsz¥ (t) as a
function of the investor horizon ranging from 02years
for y=0.7 (solid line),y = 1(dashed-dotted line),
y=3(dotted line), y= Qdashed line). The other
parameters are given in Table 1.
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Fig. 12. Investor-specific bond ripes of risk) hedging
commodity proportion varying with the investor’srizon.
This figure plotszi™PR(t s a function of the investor
horizon ranging from 0 to 2 years fpr  (@sblid
line), y=1(dashed-dotted line), y= (@lotted line),

y=6(dashed line). The other parameters are given in

Table 1.



